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Block ciphers

? input: n-bit block

x ∈ F2n

? parameter: k-bit key

κ ∈ F2k

? output: n-bit block

y = Eκ(x) ∈ F2n

? symmetry: E and E−1 use the same κ

κ E

x
n bits

y

n bits

Block cipher

P

x
n bits

y

n bits

Random permutation

A block cipher is a family of 2k

permutations of n bits.

E
P

2k 2n

?
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Emerging uses in symmetric cryptography

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

? multiparty computation (MPC)

? systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

”Usual” case

? operations on F2n , where n ' 4, 8.

? based on CPU instructions and
hardware components

Arithmetization-friendly

? operations on Fq, where
q ∈ {2n, p}, p ' 2n, n ≥ 64.

? based on large finite-field arithmetic
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The block cipher MiMC

? Minimize the number of multiplications in F2n .

? Construction of MiMC3 [Albrecht et al., AC16]:

? n-bit blocks: x ∈ F2n (n odd ≈ 129)
? n-bit key k : k ∈ F2n

? decryption: e.g. replacing x3 by x s where
s = (2n+1 − 1)/3

x

k

+ xd

k + c1

+ xd . . .

k + cr−1

+ xd

k

+ y

1 round
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Multivariate degree - 1st definition

Let f : Fn
2 → F2, there is a unique multivariate polynomial in F2[x1, . . . xn]/

(
(x2

i + xi )1≤i≤n
)
:

f (x1, ..., xn) =
∑
u∈Fn

2

aux
u, where au ∈ F2, x

u =
n∏

i=1

xuii .

This is the Algebraic Normal Form (ANF) of f .

Definition

Multivariate Degree (aka Algebraic Degree) of f : Fn
2 → F2:

dega(f ) = max
{
wt(u) : u ∈ Fn

2, au 6= 0
}
,

If F : Fn
2 → Fm

2 , then
dega(F ) = max{dega(fi ), 1 ≤ i ≤ m} .

where F (x) = (f1(x), . . . fm(x)).
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∑
u∈Fn
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aux
u, where au ∈ F2, x

u =
n∏

i=1

xuii .

This is the Algebraic Normal Form (ANF) of f .

Example: F : F211 → F211 , x 7→ x3

F : F11
2 → F11

2 , (x0, . . . ,x10) 7→
(x0x10 + x0 + x1x5 + x1x9 + x2x7 + x2x9 + x2x10 + x3x4 + x3x5 + x4x8 + x4x9 + x5x10 + x6x7 + x6x10 + x7x8 + x9x10,

x0x1 + x0x6 + x2x5 + x2x8 + x3x6 + x3x9 + x3x10 + x4 + x5x8 + x5x9 + x6x9 + x7x8 + x7x9 + x7 + x10,

x0x1 + x0x2 + x0x10 + x1x5 + x1x6 + x1x9 + x2x7 + x3x4 + x3x7 + x4x5 + x4x8 + x4x10 + x5x10 + x6x7 + x6x8 + x6x9 + x7x10 + x8 + x9x10,

x0x3 + x0x6 + x0x7 + x1 + x2x5 + x2x6 + x2x8 + x2x10 + x3x6 + x3x8 + x3x9 + x4x5 + x4x6 + x4 + x5x8 + x5x10 + x6x9 + x7x9 + x7 + x8x9 + x10,

x0x2 + x0x4 + x1x2 + x1x6 + x1x7 + x2x9 + x2x10 + x3x5 + x3x6 + x3x7 + x3x9 + x4x5 + x4x7 + x4x9 + x5 + x6x8 + x7x8 + x8x9 + x8x10,

x0x5 + x0x7 + x0x8 + x1x2 + x1x3 + x2x6 + x2x7 + x2x10 + x3x8 + x4x5 + x4x8 + x5x6 + x5x9 + x7x8 + x7x9 + x7x10 + x9,

x0x3 + x0x6 + x1x4 + x1x7 + x1x8 + x2 + x3x6 + x3x7 + x3x9 + x4x7 + x4x9 + x4x10 + x5x6 + x5x7 + x5 + x6x9 + x7x10 + x8x10 + x8 + x9x10,

x0x7 + x0x8 + x0x9 + x1x3 + x1x5 + x2x3 + x2x7 + x2x8 + x3x10 + x4x6 + x4x7 + x4x8 + x4x10 + x5x6 + x5x8 + x5x10 + x6 + x7x9 + x8x9 + x9x10,

x0x4 + x0x8 + x1x6 + x1x8 + x1x9 + x2x3 + x2x4 + x3x7 + x3x8 + x4x9 + x5x6 + x5x9 + x6x7 + x6x10 + x8x9 + x8x10 + x10,

x0x10 + x1x4 + x1x7 + x2x5 + x2x8 + x2x9 + x3 + x4x7 + x4x8 + x4x10 + x5x8 + x5x10 + x6x7 + x6x8 + x6 + x7x10 + x9,

x0x5 + x0x10 + x1x8 + x1x9 + x1x10 + x2x4 + x2x6 + x3x4 + x3x8 + x3x9 + x5x7 + x5x8 + x5x9 + x6x7 + x6x9 + x7 + x8x10 + x9x10) .
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Multivariate degree - 2nd definition

Let F : Fn
2 → Fn

2. Then using the isomorphism Fn
2 ' F2n ,

there is a unique univariate polynomial representation on F2n of degree at most 2n − 1:

F (x) =
2n−1∑
i=0

bix
i ; bi ∈ F2n

Definition

Multivariate Degree (aka Algebraic Degree) of F : F2n → F2n :

dega(F ) = max{wt(i), 0 ≤ i < 2n, and bi 6= 0}

If F : Fn
2 → Fn

2 is a permutation, then

dega(F ) ≤ n − 1
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First Plateau

Polynomial representing r rounds of MiMCd :

Pd,r (x) = Fr ◦ . . .F1(x) , where Fi = (x + ci−1)d .

Aim: determine
B r
d := max

c
dega(Pd,r ) .

? Round 1:

P3,1(x) = x3

3 = [11]2

? Round 2:

P3,2(x) = x9 + c1x
6 + c2

1x
3 + c3

1

9 = [1001]2 6 = [110]2 3 = [11]2

Definition

There is a plateau whenever B r
d = B r−1

d .

Proposition

If d = 2j − 1, there is always plateau between
rounds 1 and 2:

B2
d = B1

d .
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Proposition

Set of exponents that might appear in the polynomial:

Ed,r = {dj mod (2n − 1) where j � i , i ∈ Ed,r−1}

(a) For MiMC3. (b) For MiMC5. (c) For MiMC7. (d) For MiMC9.

(a) For MiMC15. (b) For MiMC17. (c) For MiMC31. (d) For MiMC33.
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Proposition

Set of exponents that might appear in the polynomial:

Ed,r = {dj mod (2n − 1) where j � i , i ∈ Ed,r−1}

Example:
P3,1(x) = x3 ⇒ E3,1 = {3} .

3 = [11]2
�−→


[00]2 = 0

×3−→ 0

[01]2 = 1
×3−→ 3

[10]2 = 2
×3−→ 6

[11]2 = 3
×3−→ 9

E3,2 = {0, 3, 6, 9} ,

P3,2(x) = x9 + c1x
6 + c2

1x
3 + c3

1 .

(a) For MiMC3. (b) For MiMC5. (c) For MiMC7. (d) For MiMC9.

(a) For MiMC15. (b) For MiMC17. (c) For MiMC31. (d) For MiMC33.
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Proposition

Let i ∈ Ed,r , where d = 2j − 1. Then:

∀ i ∈ Ed,r , i mod 2j+1 ∈
{

0, 1, . . . 2j
} ⋃ {

2j + 2γ, γ = 1, 2, . . . 2j−1 − 1
}
.

Example:

? For MiMC3
∀ i ∈ E3,r , i mod 8 6∈ {5, 7} .

? For MiMC7
∀ i ∈ E7,r , i mod 16 6∈ {9, 11, 13, 15} .

(a) For MiMC3. (b) For MiMC7. (c) For MiMC15. (d) For MiMC31.
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Proposition

Let i ∈ Ed,r where d = 2j + 1 and j > 1. Then:

∀ i ∈ Ed,r , i mod 2j ∈ {0, 1} .

Example:

? For MiMC5
∀ i ∈ E5,r , i mod 4 ∈ {0, 1} .

? For MiMC9
∀ i ∈ E9,r , i mod 8 ∈ {0, 1} .

(a) For MiMC5. (b) For MiMC9. (c) For MiMC17. (d) For MiMC33.
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Sparse univariate polynomials

Bounding the multivariate degree

Missing exponents when d = 2j − 1
Missing exponents when d = 2j + 1

Missing exponents when d = 2j + 1 (first rounds)

Corollary

Let i ∈ Ed,r where d = 2j + 1 and j > 1. Then:{
i mod 22j ∈

{
{γ2j , (γ + 1)2j + 1}, γ = 0, . . . r − 1

}
if r ≤ 2j ,

i mod 2j ∈ {0, 1} if r ≥ 2j .

(a) Round 1 (b) Round 2 (c) Round 3 (d) Round 4

(a) Round 5 (b) Round 6 (c) Round 7 (d) Round r ≥ 8
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Background
Sparse univariate polynomials

Bounding the multivariate degree

Bound when d = 2j − 1
Bound when d = 2j + 1

Bounding the degree when d = 2j − 1

Note that if d = 2j − 1, then
2i mod d ≡ 2i mod j .

Proposition

Let d = 2j − 1, such that j ≥ 2. Then,

B r
d ≤ br log2 dc − (br log2 dc mod j) .

Note that if 2 ≤ j ≤ 7, then
2br log2 dc+1 − 2j − 1 > d r .

Corollary

Let d ∈ {3, 7, 15, 31, 63, 127}. Then,

B r
d ≤

{
br log2 dc − j if br log2 dc mod j = 0 ,

br log2 dc − (br log2 dc mod j) else .
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Background
Sparse univariate polynomials

Bounding the multivariate degree

Bound when d = 2j − 1
Bound when d = 2j + 1

Bounding the degree when d = 2j − 1

Particularity: Plateau when br log2 dc mod j = j − 1 and b(r + 1) log2 dc mod j = 0.

Bound for MiMC3 Bound for MiMC7
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Background
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Bounding the multivariate degree

Bound when d = 2j − 1
Bound when d = 2j + 1

Bounding the degree when d = 2j + 1

Note that if d = 2j + 1, then

2i mod d ≡

{
2i mod 2j if i ≡ 0, . . . , j mod 2j ,

d − 2(i mod 2j)−j if i ≡ 0, . . . , j mod 2j .

Proposition

Let d = 2j + 1 s.t. j > 1. Then if r > 1:

B r
d ≤

{
br log2 dc − j + 1 if br log2 dc mod 2j ∈ {0, j − 1, j + 1} ,
br log2 dc − j else .

The bound can be refined on the first rounds!
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Background
Sparse univariate polynomials

Bounding the multivariate degree

Bound when d = 2j − 1
Bound when d = 2j + 1

Bounding the degree when d = 2j + 1

Particularity: There is a gap in the first rounds.

Bound for MiMC5 Bound for MiMC9
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Background
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Bounding the multivariate degree

Bound when d = 2j − 1
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Music in MiMC3 and Conjecture

� Patterns in sequence (br log2 3c)r>0: denominators of semiconvergents of log2 3 ' 1.58496

D = { 1 , 2 , 3, 5, 7 , 12 , 17, 29, 41, 53 , 94, 147, 200, 253, 306, 359 , . . .} ,

log2 3 ' a

b
⇔ 2a ' 3b

� Music theory:

� perfect octave 2:1

� perfect fifth 3:2 219 ' 312 ⇔ 27 '
(

3

2

)12

⇔ 7 octaves ∼ 12 fifths

Observation

Let t be an integer s.t. 1 ≤ t ≤ 21. Then

∀x ∈ Z/3tZ, ∃ε2, . . . , ε2t+2 ∈ {0, 1}, s.t. x =
2t+2∑
j=2

εj4
j mod 3t .
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Background
Sparse univariate polynomials

Bounding the multivariate degree

Bound when d = 2j − 1
Bound when d = 2j + 1

Conclusions and Perspectives

How to set up a distinguisher for MiMCd using
sparse univariate representation?

? missing exponents in the univariate
representation of MiMCd .

↓
? bounds on the multivariate degree

? tracing exponents: conjecture?

→

→
↗

? ? ? ?

? Higher-Order differential attacks

+ More details on eprint.iacr.org/2022/366 (accepted at DCC23)

Thanks for your attention� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
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