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Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Block ciphers

* input: n-bit block

x € Fon X X
n bits n bits
* parameter: k-bit key p ‘)
k€ Fox n bits n bits
* output: n-bit block Y Y
y = E.(x) € Fa Block cipher Random permutation

% symmetry: E and E~! use the same «
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Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Block ciphers

* input: n-bit block

x € Fon X X
n bits n bits
* parameter: k-bit key p ‘)
K € Fa n bits n bits
% output: n-bit block y y
y = E.(x) € Fan Block cipher Random permutation
% symmetry: E and E~! use the same «
ok on
A block cipher is a family of 2% @
permutations of n bits. —
22-
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Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Emerging uses in symmetric cryptography

’ Problem: Analyzing the security of new symmetric primitives‘

Protocols requiring new primitives:
* multiparty computation (MPC)
* systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.
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Emerging uses in symmetric cryptography

’ Problem: Analyzing the security of new symmetric primitives‘

Protocols requiring new primitives:
* multiparty computation (MPC)
* systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

"Usual” case Arithmetization-friendly
+ operations on Fon, where n ~ 4, 8. * operations on g, where
» based on CPU instructions and q€{2" p},p~2",n> 64
hardware components * based on large finite-field arithmetic
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Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

The block cipher MiMC

% Minimize the number of multiplications in Fyn.

* Construction of MiMCj3 [Albrecht et al., AC16]:
* n-bit blocks: x € Fo» (n odd ~ 129)
* n-bit key k: k € Fon
% decryption: e.g. replacing x3 by x° where
s=(2"1-1)/3

k k+C1 k+cr—1 k
| | | |
X — + +~--—>+—>+*>y
«—
1 round
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Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

The block cipher MiMC

% Minimize the number of multiplications in Fan. R:=[nlogs2] .

* Construction of MiMCz [Albrecht et al., AC16]:

n 129 255 769 1025
* n-bit blocks: x € Fa» (n odd = 129)
* n-bit key k: k € Fo» R 82 161 486 647

% decryption: e.g. replacing x3 by x° where
s=(2"1-1)/3

Number of rounds for MiMCs.

k k+a k+c1 k
| | | |
X — + —+ ~--*>—|—*>—|——>y
«—
1 round
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Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

The block cipher MiMC

* Minimize the number of multiplications in Fan. R:=[nlog32] .

* Construction of MiMCj3 [Albrecht et al., AC16]:

n 129 255 769 1025
* n-bit blocks: x € Fa» (n odd = 129)
* n-bit key k: k € Fon R 82 161 486 647

% decryption: e.g. replacing x3 by x° where
s=(2"1-1)/3

Number of rounds for MiMCs.

&] Cr—1
| |
X—|—*>~~-*>—|—*>y
«—
1 round
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Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Multivariate degree - 1st definition

Let f : F§ — [y, there is a unique multivariate polynomial in Fa[xq, ... x,]/ ((x,2 + Xi)lsisn)3

n
F(X1y ey Xn) = E ayx", wherea, € Fp, x" = Hx,.”" )
i=1

u€lFy

This is the Algebraic Normal Form (ANF) of f.

Definition

Muiltivariate Degree (aka Algebraic Degree) of f : F§ — Fy:

deg?(f) = max {wt(v) : u € F3,a, # 0} ,
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Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Multivariate degree - 1st definition

Let f : F§ — [y, there is a unique multivariate polynomial in Fa[xq, ... x,]/ ((x,2 + Xi)lsisn)3

n
F(X1y ey Xn) = E ayx", wherea, € Fp, x" = Hx,.”" )

u€lFy i=1

This is the Algebraic Normal Form (ANF) of f.

Definition

Muiltivariate Degree (aka Algebraic Degree) of f : F§ — Fy:

deg?(f) = max {wt(v) : u € F3,a, # 0} ,

If F:F5 — 7, then
deg?(F) = max{deg?(f;), 1 <i < m} .

where F(x) = (f(x),... fm(x)).

N
[N

Clémence Bouvier Iterated Power Functions: from Univariate Polynomial Representation to Multivariate Degree



Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Multivariate degree - 1st definition

Let f : F§ — Fy, there is a unique multivariate polynomial in Fa[xq, ... x]/ ((x,2 + Xi)lsisn)3

n

F(X1y ey Xn) = Z ayx", wherea, € Fp, x" = H

u€lFy i=1

This is the Algebraic Normal Form (ANF) of .

Example:  F i Fon — Fou,x = X

11 11
F:F2 *)FQ ,(Xo,...,Xm)l—)

(x0x10 + X0 + X1 X5 + X1Xg + Xpx7 + XpXg + xpX10 + X3%4 + X3X5 + X4xg + x4X9 + X5xX10 + XX7 + X6x10 + X7Xg + X9X10>

XpX1 + X0X6 + X2X5 + xoxg + X3%Xg + X3Xg + X3x10 + X4 + X5xg + X5Xg + XgXg + X7xg + x7X9 + X7 + X10»

X0X1 +xpx2 + x0x10 + X1X5 + X1%6 + x1xXg + xpx7 + X3X4 + x3x7 + x4x5 + xgxg + X4x10 + X5x10 + X6X7 + X6Xg + X6X9 + X7x10 + X8 + X9x10»

X0X3 + X0Xg + X0X7 + x| + X0X5 + XoXg + Xpxg + Xpx10 + X3X6 + X3xXg + X3Xg + X4x5 + x4%g + X4 + X5xg + X5x10 + X6Xg + x7Xg + X7 + XgXg + X105
X0X2 + X0xg4 + x1x2 + Xx1%6 + X1x7 + Xpxg + X0x10 + X3X5 + X3X6 + X3X7 + x3X9 + x4 X5 + xgx7 + Xgx9 + X5 + x6xg + x7xg + xgxg + Xgx10»

X0x5 + xpx7 + Xpxg + x1x2 + x1X3 + XpXg + xpx7 + xox10 + X3xXg + X4x5 + x4xg + Xg5xg + x5xg + x7xg + x7x9 + x7x10 + X9,

X0x3 + x0X6 + X1%4 + x1x7 + x1xg + X0 + x3%6 + X357 + x3x9 + x4x7 +x4x9 + x4x10 + X556 + x5x7 + X5 + Xgxg + x7x10 + xgx10 + x5 + x9x10>
X0X7  X0Xg T X0X9 + x1X3 + x1X5 + xpx3 + Xxpx7 + Xpxg + x3x10 + X4x6 + X4x7 + x4xg + x4X10 + X5%6 + x5xg + x5x10 + X6 + x7X9 + xgX9 + X910,
X0x4 + xpxg + X1Xg + x1xg + x1Xg + Xpx3 + Xpx4 + x3x7 + X3xg + X4x9 + x5Xg + Xg5xg + xgx7 + xgXx10 + XgXg9 + Xgx10 + X10>»

X0X10 + X1%4 + X1x7 + xpx5 + xoxg + Xoxg + X3 + X4x7 + x4xg + X4x10 + Xgxg + X5x10 + X6X7 + XgXg + Xg + X7x10 + X9,

X0X5 + XpX10 + X1Xg + X1Xg + X1X10 +X2X4 + X2X6 + x3x4 + x3Xg + X3X9 + X5x7 + X5xg + X5X9 + X6X7 + X6xg + x7 + xgx10 + X9x10) -

ce Bouvier Iterated Power Functions: from Univariate Polynomial Representation to Multivariate Degree

Cléme




Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Multivariate degree - 2nd definition

Let F : F5 — [F5. Then using the isomorphism F§ ~ Fon,
there is a unique univariate polynomial representation on Fo» of degree at most 2" — 1:

2"—1

F(X) = Z b,'Xi; b; € Fan
i=0

Definition

Muiltivariate Degree (aka Algebraic Degree) of F : Fon — Fon:

deg?(F) = max{wt(i), 0 </ < 2", and b; # 0}
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Background Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Multivariate degree - 2nd definition

Let F : F5 — [F5. Then using the isomorphism F§ ~ Fon,
there is a unique univariate polynomial representation on Fo» of degree at most 2" — 1:

2"—1

F(X) = Z b,'Xi; b; € Fan
i=0

Definition

Muiltivariate Degree (aka Algebraic Degree) of F : Fon — Fon:

deg?(F) = max{wt(i), 0 < i <2", and b; # 0}

If F:F; — IF] is a permutation, then

‘dega(F) <n-— 1‘
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Missing exponents when d = 2/ — 1
Missing exponents when d = 2/ + 1

Sparse univariate polynomials

Iterated Power Functions:
from Univariate Polynomial Representation to Multivariate Degree

© Sparse univariate polynomials
o Missing exponents when d =2/ — 1
@ Missing exponents when d =2/ +1
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Missing exponents when d = 2 1

Sparse univariate polynomials e
P: POl Missing exponents when d = 2/ + 1

First Plateau

Polynomial representing r rounds of MiMCy:
Pg.r(x) = Fro...Fi(x), where F; = (x + ci1)?

Aim: determine
B/ := maxdeg®(Pq.,) -
(e}
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Missing exponents when d = 2 1

Sparse univariate polynomials e
P: POl Missing exponents when d = 2/ + 1

First Plateau

Polynomial representing r rounds of MiMCy:
Pg.r(x) = Fro...Fi(x), where F; = (x + ci1)?
Aim: determine

B/ := maxdeg®(Pq.,) -
c

% Round 1: Bl =2
P31(x) = X3

3=[l1]
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Missing exponents when d = 2j -1

Sparse univariate polynomials e
P: POl Missing exponents when d = 2/ + 1

First Plateau

Polynomial representing r rounds of MiMCy:
Pg.r(x) = Fro...Fi(x), where F; = (x + ci1)?
Aim: determine

B/ := maxdeg®(Pq.,) -
c

% Round 1: Bl =2
Psa(x) = x°
3=[11]
x Round 2: BZ2=2
Ps32(x) = X2+ ax®+ c12x3 + cf’

9 =[1001], 6 = [110]2 3 = [11],
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Missing exponents when d = 2j -1

Sparse univariate polynomials e
P: POl Missing exponents when d = 2/ + 1

First Plateau

Polynomial representing r rounds of MiMCy:
P, (x)=F, 0...F(x), where F; = (x + ¢;_1)? .

Aim: determine
Bj := maxdeg®(Pq.r) -
(o}

* Round 1:
7)3,1(X) = X3
3=[11]
+ Round 2:
Pia(x) =X+ ax® + i3+ ¢

9 =[1001], 6 = [110], 3 = [11],
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Missing exponents when d = 2j -1

Sparse univariate polynomials e
P: POl Missing exponents when d = 2/ + 1

First Plateau

Polynomial representing r rounds of MiMCy:
P, (x)=F, 0...F(x), where F; = (x + ¢;_1)? .

Aim: determine
Bj := maxdeg®(Pq.r) -
(o}

. 1
* Round 1: Definition

— 3 . —
Psa(x) = x There is a plateau whenever B}, = B *.

3=[11]

+ Round 2:

2
Pia(x) =X+ ax® + i3+ ¢

9 =[1001], 6 = [110], 3 = [11],
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Missing exponents when d = fo -1

Sparse univariate polynomials e p
P: P Missing exponents when d = 2/ + 1

First Plateau

Polynomial representing r rounds of MiMCy:
P, (x)=F, 0...F(x), where F; = (x + ¢;_1)? .

Aim: determine
Bj := maxdeg®(Pq.r) -
(o}

) 1
* Round 1: Definition

Psa(x) = x* There is a plateau whenever B!, = Bg_l.
3=[11]
Proposition
* Round 2: Bz =2 If d =2/ — 1, there is always plateau between
3 rounds 1 and 2:

P3a(x) =X+ ax® + i3 + ¢

2 _ pl
9 = [1001], 6 = [110], 3 = [11], By =By -
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Missing exponents when d = ZJT -1

Sparse univariate polynomials e p
P: P Missing exponents when d = 2/ + 1

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

Ea.r ={dj mod (2" — 1) where j < i, i € Eq,—1}
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Missing exponents when d = fo -1

Sparse univariate polynomials e p
P: P Missing exponents when d = 2/ + 1

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

Ea.r = {dj mod (2" — 1) where j =i, i € Eg,—1}

Example:

'P3’1(X) = X3 = 53,1 = {3} .

X
w

[00,=0 = 0

X3
3=[11], — (012 =1 ) ’
[11,=3 = o9

53,2 = {0a37679} )

P3a(x) = x" + ax® + x’ + ¢ .
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Missing exponents when d = ZJT -1

Sparse univariate polynomials e p
P: P Missing exponents when d = 2/ + 1

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

Ea.r ={dj mod (2" — 1) where j < i, i € Eq,—1}

) For MiMCs. (b) For MiMCs. ) For MiMCy. (d) For MiMCag.
E M i
) For MiMCjs. (b) For MiMC;7. (c) For MiMCs;. ) For MiMCgz3.
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Missing exponents when d = 2/ — 1

Sparse univariate polynomials e
P: P Missing exponents when d = 2/ + 1

Missing exponents when d =2/ — 1

Proposition

Let i € Eq,r, where d = 2 — 1. Then:

Vi€&y, imod 2t €{0,1,...2} | | {2 +2y,y=1,2,... 27" —1}.
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Missing exponents when d = ZJT -1

Sparse univariate polynomials e p
P: P Missing exponents when d = 2/ + 1

Missing exponents when d =2/ — 1

Proposition

Let i € Eq,r, where d = 2 — 1. Then:

Vi€&y, imod 2t €{0,1,...2} | | {2 +2y,y=1,2,... 27" —1}.

Example:

* For MiMC3
Vie&s,, imod8¢&{57}.

* For MiMC7
Vie&,, imod16 ¢ {9,11,13,15} .

) For MiMCs. ) For MiMCy7. (c) For MiMCjs. (d) For MiMCa;.
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Missing exponents when d = 2/ — 1

Sparse univariate polynomials el
P: P Missing exponents when d =

Missing exponents when d =2/ + 1

Proposition

Let i € Eq,r where d = 2/ +1andj>1. Then:

Vi€ &y, imod2 € {0,1}.
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Missing exponents when d = 2/ — 1

Sparse univariate polynomials A
pars ©P Missing exponents when d = 2/ + 1

Missing exponents when d =2/ + 1

Proposition

Let i € Eq,r where d = 2/ +1andj>1. Then:

Vi€ &y, imod2 € {0,1}.

Example:

* For MiMCs
Vie&s,, imod4ec {0,1}.

+ For MiMCq
Vie&,, imod8ec {0,1}.

H

[
[
LT
(a) For MiMCs. (b) For MiMCa. (c) For MiMCy7. (d) For MiMCass.
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Missing exponents when d = 2/ — 1

Sparse univariate polynomials A
P: < P Missing exponents when d = 2/ + 1

Missing exponents when d = 2/ + 1 (first rounds)

Let i € &5, where d =2/ +1 and j > 1. Then:

imod2¥ € {{72,(v+1)2 +1}, v=0,...r—1} ifr<2,
imod 2 € {0,1} if r>2.

" Hy !

(a) Round 1 (b) Round 2 (c) Round 3 (d) Round 4

[
(a) Round 5 (b) Round 6 (c) Round 7 (d) Round r > 8

15/22 Clémence Bouvier Iterated Power Functions: from Univariate Polynomial Representation to Multivariate Degree




Bound when d = 2/ — 1
Bound when d = 2/ + 1

Bounding the multivariate degree

Iterated Power Functions:
from Univariate Polynomial Representation to Multivariate Degree

© Bounding the multivariate degree
@ Bound when d =2/ — 1
@ Bound when d =2/ + 1
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Bound when d = 2J: -1
Bound when d = 2/ + 1

Bounding the multivariate degree

Bounding the degree when d =2/ — 1

Note that if d = 2/ — 1, then ' _ '
2" mod d = 2/ modJ

Proposition

Let d = 2 — 1, such that j > 2. Then,

By < |rlogy d| — (| rlog, d] mod j) .
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Bound when d = 2J: -1
Bound when d = 2/ + 1

Bounding the multivariate degree

Bounding the degree when d =2/ — 1

Note that if d = 2/ — 1, then ' _ '
2" mod d = 27 ™dJ

Proposition

Let d = 2 — 1, such that j > 2. Then,

By < |rlogy d| — (| rlog, d] mod j) .

Note that if 2 < j < 7, then
2|_r|og2 dJ+1 _ 2] _ 1 > dr .

Let d € {3,7,15,31,63,127}. Then,

B < |rlog, d]| —j if |[rlog,d| modj=0,
=\ |rlog,d| — (|rlog,d| mod j) else .
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Bound when d = 2J: -1
Bound when d = 2/ + 1

Bounding the multivariate degree

Bounding the degree when d =2/ — 1

Particularity: Plateau when |rlog, d| mod j =j—1 and |[(r + 1)log, d| mod j = 0.

= = log2 37r === log2 7°r 4
14 | == Our Bound == Our bound V.
% MiMC_3 v 221 Y MiMC_7

12 A

10 A

Degree
=]
)

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Rounds Rounds
Bound for MiMC3 Bound for MiMC+

18 /22 Clémence Bouvier Iterated Power Functions: from Univariate Polynomial Representation to Multivariate Degree



Bound when d = 2/ — 1

Y
Bounding the multivariate degree (B e ¢ = 27 45 1

Bounding the degree when d =2/ +1

Note that if d = 2/ + 1, then

_ oi mod 2j if i=0,...,j mod 2j
2 mod d = d o ’
m {d_2(1m0d21)—1 ifi=0,...,jmod2j.

Proposition

Let d =2/ +1s.t. j>1. Thenifr > 1:

gr < JLrlogad] —j+1 if [rlogyd] mod 2j € {0,j~1,j+1},
|rlog,d| —j else .
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Bound when d = 2/ — 1

Y
Bounding the multivariate degree (B e ¢ = 27 45 1

Bounding the degree when d =2/ +1

Note that if d = 2/ + 1, then

_ oi mod 2j if i=0,...,j mod 2j
2 mod d = d o ’
m {d_2(1m0d21)—1 ifi=0,...,jmod2j.

Proposition

Let d =2/ +1s.t. j>1. Thenifr > 1:

gr < JLrlogad] —j+1 if [rlogyd] mod 2j € {0,j~1,j+1},
=\ |rlogyd] —j else .

The bound can be refined on the first rounds!
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Bound when d = 2/ — 1
Bound when d = 2/ +1

Bounding the multivariate degree

Bounding the degree when d =2/ +1

Particularity: There is a gap in the first rounds.

=== log2 5°r agd =" log2 9"°r -
20 | == Our Bound ” == Our Bound Va
% MMC5 - 267 % MiMC 9 4
18 1 - = 244 - £
16 - 224
20+
14 A
18
§ 121 % 16 -
o o
8 10 1 8 14
12 A
5
10
6 1 84
4 6
a4
24 5]
T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Rounds Rounds
Bound for MiMCs Bound for MiMCg

N
S
N
]
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Bound when d = 2/ — 1

Y
Bounding the multivariate degree (B e ¢ = 27 45 1

Music in MiMC; and Conjecture

71 Patterns in sequence (| rlog, 3]),>0: denominators of semiconvergents of log, 3 ~ 1.58496

©={1][2]3,5/7,12,17,29,41, 53,94, 147,200, 253,306, 359],...} ,

log, 3 ~ % & 27~3P
/2 Music theory:
2 perfect octave 2:1 » 5 , 3\ 12 _
> perfect fifth 3:2 27 ~3 & 20~ (2) & 7 octaves ~ 12 fifths
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Bound when d = 2/ — 1

Y
Bounding the multivariate degree (B e ¢ = 27 45 1

Music in MiMC; and Conjecture

71 Patterns in sequence (| rlog, 3]),>0: denominators of semiconvergents of log, 3 ~ 1.58496

©={1][2]3,5/7,12,17,29,41, 53,94, 147,200, 253,306, 359],...} ,

log, 3 ~ % & 27~3P
/2 Music theory:
2 perfect octave 2:1 » 5 , 3\ 12 _
M perfect fifth 3:2 27 ~3 & 2~ (2) & 7 octaves ~ 12 fifths

Observation

Let t be an integer s.t. 1 <t < 21. Then

2t+2
Vx € Z/3'Z, e, ... €212 € {0, 1}, st. x =Y &;4 mod 3" .
j=2
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Bound when d = 2/ — 1

Y
Bounding the multivariate degree (B e ¢ = 27 45 1

Conclusions and Perspectives

How to set up a distinguisher for MiMC, using
sparse univariate representation?

* missing exponents in the univariate
representation of MiMCy.
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Bound when d = 2/ — 1

Y
Bounding the multivariate degree (B e ¢ = 27 45 1

Conclusions and Perspectives

How to set up a distinguisher for MiMC, using
sparse univariate representation?

* missing exponents in the univariate
representation of MiMCy.

1

* bounds on the multivariate degree
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iz More details on eprint.iacr.org/2022/366 (accepted at DCC23)
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