Iterated Power Functions: from Univariate Polynomial Representation to Multivariate Degree

Clémence Bouvier ${ }^{1,2}$ joint work with Anne Canteaut ${ }^{2}$ and Léo Perrin ${ }^{2}$
${ }^{1}$ Sorbonne Université, $\quad{ }^{2}$ Inria Paris

Fq15, June 20th, 2023

Introduction

Content

Iterated Power Functions:
 from Univariate Polynomial Representation to Multivariate Degree

(1) Background

- Emerging uses in symmetric cryptography
- The example of MiMC
- Definition of multivariate degree
(2) Sparse univariate polynomials
- Missing exponents when $d=2^{j}-1$
- Missing exponents when $d=2^{j}+1$
(3) Bounding the multivariate degree
- Bound when $d=2^{j}-1$
- Bound when $d=2^{j}+1$

Content

Iterated Power Functions:
 from Univariate Polynomial Representation to Multivariate Degree

(1) Background

- Emerging uses in symmetric cryptography
- The example of MiMC
- Definition of multivariate degree
- Missing exponents when $d=2^{j}-1$
- Missing exponents when $d=2^{j}+1$
- Bound when $d=2^{j}-1$
- Bound when $d=2^{j}+1$

Block ciphers

* input: n-bit block

$$
x \in \mathbb{F}_{2^{n}}
$$

* parameter: k-bit key

$$
\kappa \in \mathbb{F}_{2^{k}}
$$

* output: n-bit block

$$
y=E_{\kappa}(x) \in \mathbb{F}_{2^{n}}
$$

Random permutation
\star symmetry: E and E^{-1} use the same κ

Block ciphers

* input: n-bit block

$$
x \in \mathbb{F}_{2^{n}}
$$

* parameter: k-bit key

$$
\kappa \in \mathbb{F}_{2^{k}}
$$

* output: n-bit block

$$
y=E_{\kappa}(x) \in \mathbb{F}_{2^{n}}
$$

Block cipher

Random permutation
\star symmetry: E and E^{-1} use the same κ

A block cipher is a family of 2^{k} permutations of n bits.

Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Emerging uses in symmetric cryptography

Problem: Analyzing the security of new symmetric primitives
Protocols requiring new primitives:

* multiparty computation (MPC)
* systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

Emerging uses in symmetric cryptography
The example of MiMC
Definition of multivariate degree

Emerging uses in symmetric cryptography

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:
\star multiparty computation (MPC)

* systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

"Usual" case

\star operations on $\mathbb{F}_{2^{n}}$, where $n \simeq 4,8$.
\star based on CPU instructions and hardware components

Arithmetization-friendly

* operations on \mathbb{F}_{q}, where $q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64$.
* based on large finite-field arithmetic

The block cipher MiMC

* Minimize the number of multiplications in $\mathbb{F}_{2^{n}}$.
* Construction of MiMC_{3} [Albrecht et al., AC16]:
$\star n$-bit blocks: $x \in \mathbb{F}_{2^{n}}(n$ odd $\approx 129)$
* n-bit key $k: k \in \mathbb{F}_{2^{n}}$
\star decryption: e.g. replacing x^{3} by x^{s} where $s=\left(2^{n+1}-1\right) / 3$

The block cipher MiMC

\star Minimize the number of multiplications in $\mathbb{F}_{2^{n}}$.

* Construction of MiMC_{3} [Albrecht et al., AC16]:
$\star n$-bit blocks: $x \in \mathbb{F}_{2^{n}}(n$ odd $\approx 129)$
$\star n$-bit key $k: k \in \mathbb{F}_{2^{n}}$
\star decryption: e.g. replacing x^{3} by x^{s} where $s=\left(2^{n+1}-1\right) / 3$

$$
R:=\left\lceil n \log _{3} 2\right\rceil .
$$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC_{3}.

The block cipher MiMC

\star Minimize the number of multiplications in $\mathbb{F}_{2^{n}}$.

* Construction of MiMC_{3} [Albrecht et al., AC16]:
$\star n$-bit blocks: $x \in \mathbb{F}_{2^{n}}(n$ odd $\approx 129)$
* n-bit key $k: k \in \mathbb{F}_{2^{n}}$
\star decryption: e.g. replacing x^{3} by x^{s} where $s=\left(2^{n+1}-1\right) / 3$

$$
R:=\left\lceil n \log _{3} 2\right\rceil .
$$

$R:=\left\lceil n \log _{3} 2\right\rceil$				
n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC_{3}.

Multivariate degree - 1st definition

Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, there is a unique multivariate polynomial in $\mathbb{F}_{2}\left[x_{1}, \ldots x_{n}\right] /\left(\left(x_{i}^{2}+x_{i}\right)_{1 \leq i \leq n}\right)$:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u}, \text { where } a_{u} \in \mathbb{F}_{2}, x^{u}=\prod_{i=1}^{n} x_{i}^{u_{i}}
$$

This is the Algebraic Normal Form (ANF) of f.

Definition

Multivariate Degree (aka Algebraic Degree) of $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$:

$$
\operatorname{deg}^{a}(f)=\max \left\{\operatorname{wt}(u): u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0\right\}
$$

Multivariate degree - 1st definition

Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, there is a unique multivariate polynomial in $\mathbb{F}_{2}\left[x_{1}, \ldots x_{n}\right] /\left(\left(x_{i}^{2}+x_{i}\right)_{1 \leq i \leq n}\right)$:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u}, \text { where } a_{u} \in \mathbb{F}_{2}, x^{u}=\prod_{i=1}^{n} x_{i}^{u_{i}}
$$

This is the Algebraic Normal Form (ANF) of f.

Definition

Multivariate Degree (aka Algebraic Degree) of $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$:

$$
\operatorname{deg}^{a}(f)=\max \left\{\operatorname{wt}(u): u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0\right\}
$$

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, then

$$
\operatorname{deg}^{a}(F)=\max \left\{\operatorname{deg}^{a}\left(f_{i}\right), 1 \leq i \leq m\right\}
$$

where $F(x)=\left(f_{1}(x), \ldots f_{m}(x)\right)$.

Multivariate degree - 1st definition

Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, there is a unique multivariate polynomial in $\mathbb{F}_{2}\left[x_{1}, \ldots x_{n}\right] /\left(\left(x_{i}^{2}+x_{i}\right)_{1 \leq i \leq n}\right)$:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u}, \text { where } a_{u} \in \mathbb{F}_{2}, x^{u}=\prod_{i=1}^{n} x_{i}^{u_{i}}
$$

This is the Algebraic Normal Form (ANF) of f.
Example:

$$
\begin{aligned}
& F: \mathbb{F}_{2^{11}} \rightarrow \mathbb{F}_{2^{11}}, x \mapsto x^{3} \\
& F: \mathbb{F}_{2}^{11} \rightarrow \mathbb{F}_{2}^{11},\left(x_{0}, \ldots, x_{10}\right) \mapsto \\
& \left(x_{0} x_{10}+x_{0}+x_{1} x_{5}+x_{1} x_{9}+x_{2} x_{7}+x_{2} x_{9}+x_{2} x_{10}+x_{3} x_{4}+x_{3} x_{5}+x_{4} x_{8}+x_{4} x_{9}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{10}+x_{7} x_{8}+x_{9} x_{10},\right. \\
& x_{0} x_{1}+x_{0} x_{6}+x_{2} x_{5}+x_{2} x_{8}+x_{3} x_{6}+x_{3} x_{9}+x_{3} x_{10}+x_{4}+x_{5} x_{8}+x_{5} x_{9}+x_{6} x_{9}+x_{7} x_{8}+x_{7} x_{9}+x_{7}+x_{10} \text {, } \\
& x_{0} x_{1}+x_{0} x_{2}+x_{0} x_{10}+x_{1} x_{5}+x_{1} x_{6}+x_{1} x_{9}+x_{2} x_{7}+x_{3} x_{4}+x_{3} x_{7}+x_{4} x_{5}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{8}+x_{6} x_{9}+x_{7} x_{10}+x_{8}+x_{9} x_{10}, \\
& x_{0} x_{3}+x_{0} x_{6}+x_{0} x_{7}+x_{1}+x_{2} x_{5}+x_{2} x_{6}+x_{2} x_{8}+x_{2} x_{10}+x_{3} x_{6}+x_{3} x_{8}+x_{3} x_{9}+x_{4} x_{5}+x_{4} x_{6}+x_{4}+x_{5} x_{8}+x_{5} x_{10}+x_{6} x_{9}+x_{7} x_{9}+x_{7}+x_{8} x_{9}+x_{10}, \\
& x_{0} x_{2}+x_{0} x_{4}+x_{1} x_{2}+x_{1} x_{6}+x_{1} x_{7}+x_{2} x_{9}+x_{2} x_{10}+x_{3} x_{5}+x_{3} x_{6}+x_{3} x_{7}+x_{3} x_{9}+x_{4} x_{5}+x_{4} x_{7}+x_{4} x_{9}+x_{5}+x_{6} x_{8}+x_{7} x_{8}+x_{8} x_{9}+x_{8} x_{10}, \\
& x_{0} x_{5}+x_{0} x_{7}+x_{0} x_{8}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{6}+x_{2} x_{7}+x_{2} x_{10}+x_{3} x_{8}+x_{4} x_{5}+x_{4} x_{8}+x_{5} x_{6}+x_{5} x_{9}+x_{7} x_{8}+x_{7} x_{9}+x_{7} x_{10}+x_{9}, \\
& x_{0} x_{3}+x_{0} x_{6}+x_{1} x_{4}+x_{1} x_{7}+x_{1} x_{8}+x_{2}+x_{3} x_{6}+x_{3} x_{7}+x_{3} x_{9}+x_{4} x_{7}+x_{4} x_{9}+x_{4} x_{10}+x_{5} x_{6}+x_{5} x_{7}+x_{5}+x_{6} x_{9}+x_{7} x_{10}+x_{8} x_{10}+x_{8}+x_{9} x_{10}, \\
& x_{0} x_{7}+x_{0} x_{8}+x_{0} x_{9}+x_{1} x_{3}+x_{1} x_{5}+x_{2} x_{3}+x_{2} x_{7}+x_{2} x_{8}+x_{3} x_{10}+x_{4} x_{6}+x_{4} x_{7}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{6}+x_{5} x_{8}+x_{5} x_{10}+x_{6}+x_{7} x_{9}+x_{8} x_{9}+x_{9} x_{10} \text {, } \\
& x_{0} x_{4}+x_{0} x_{8}+x_{1} x_{6}+x_{1} x_{8}+x_{1} x_{9}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{7}+x_{3} x_{8}+x_{4} x_{9}+x_{5} x_{6}+x_{5} x_{9}+x_{6} x_{7}+x_{6} x_{10}+x_{8} x_{9}+x_{8} x_{10}+x_{10}, \\
& x_{0} x_{10}+x_{1} x_{4}+x_{1} x_{7}+x_{2} x_{5}+x_{2} x_{8}+x_{2} x_{9}+x_{3}+x_{4} x_{7}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{8}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{8}+x_{6}+x_{7} x_{10}+x_{9}, \\
& \left.x_{0} x_{5}+x_{0} x_{10}+x_{1} x_{8}+x_{1} x_{9}+x_{1} x_{10}+x_{2} x_{4}+x_{2} x_{6}+x_{3} x_{4}+x_{3} x_{8}+x_{3} x_{9}+x_{5} x_{7}+x_{5} x_{8}+x_{5} x_{9}+x_{6} x_{7}+x_{6} x_{9}+x_{7}+x_{8} x_{10}+x_{9} x_{10}\right)
\end{aligned}
$$

Multivariate degree - 2nd definition

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$. Then using the isomorphism $\mathbb{F}_{2}^{n} \simeq \mathbb{F}_{2^{n}}$, there is a unique univariate polynomial representation on $\mathbb{F}_{2^{n}}$ of degree at most $2^{n}-1$:

$$
F(x)=\sum_{i=0}^{2^{n}-1} b_{i} x^{i} ; b_{i} \in \mathbb{F}_{2^{n}}
$$

Definition

Multivariate Degree (aka Algebraic Degree) of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
\operatorname{deg}^{a}(F)=\max \left\{\operatorname{wt}(i), 0 \leq i<2^{n}, \text { and } b_{i} \neq 0\right\}
$$

Multivariate degree - 2nd definition

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$. Then using the isomorphism $\mathbb{F}_{2}^{n} \simeq \mathbb{F}_{2^{n}}$, there is a unique univariate polynomial representation on $\mathbb{F}_{2^{n}}$ of degree at most $2^{n}-1$:

$$
F(x)=\sum_{i=0}^{2^{n}-1} b_{i} x^{i} ; b_{i} \in \mathbb{F}_{2^{n}}
$$

Definition

Multivariate Degree (aka Algebraic Degree) of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
\operatorname{deg}^{a}(F)=\max \left\{\operatorname{wt}(i), 0 \leq i<2^{n}, \text { and } b_{i} \neq 0\right\}
$$

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is a permutation, then

$$
\operatorname{deg}^{a}(F) \leq n-1
$$

Content

Iterated Power Functions:
 from Univariate Polynomial Representation to Multivariate Degree

-
- Emerging uses in symmetric cryptography
- The example of MiMC
- Definition of multivariate degreeSparse univariate polynomials
- Missing exponents when $d=2^{j}-1$
- Missing exponents when $d=2^{j}+1$
- Bound when $d=2^{j}-1$
- Bound when $d=2^{j}+1$

First Plateau

Polynomial representing r rounds of MiMC_{d} :

$$
\mathcal{P}_{d, r}(x)=F_{r} \circ \ldots F_{1}(x), \text { where } F_{i}=\left(x+c_{i-1}\right)^{d} .
$$

Aim: determine

$$
B_{d}^{r}:=\max _{c} \operatorname{deg}^{a}\left(\mathcal{P}_{d, r}\right) .
$$

First Plateau

Polynomial representing r rounds of MiMC_{d} :

$$
\mathcal{P}_{d, r}(x)=F_{r} \circ \ldots F_{1}(x), \text { where } F_{i}=\left(x+c_{i-1}\right)^{d} .
$$

Aim: determine

$$
B_{d}^{r}:=\max _{c} \operatorname{deg}^{a}\left(\mathcal{P}_{d, r}\right)
$$

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{3,1}(x)=x^{3} \\
3=[11]_{2}
\end{gathered}
$$

First Plateau

Polynomial representing r rounds of MiMC_{d} :

$$
\mathcal{P}_{d, r}(x)=F_{r} \circ \ldots F_{1}(x), \text { where } F_{i}=\left(x+c_{i-1}\right)^{d}
$$

Aim: determine

$$
B_{d}^{r}:=\max _{c} \operatorname{deg}^{a}\left(\mathcal{P}_{d, r}\right)
$$

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{3,1}(x)=x^{3} \\
3=[11]_{2}
\end{gathered}
$$

* Round 2: $B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{3,2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

First Plateau

Polynomial representing r rounds of MiMC_{d} :

$$
\mathcal{P}_{d, r}(x)=F_{r} \circ \ldots F_{1}(x), \text { where } F_{i}=\left(x+c_{i-1}\right)^{d}
$$

Aim: determine

$$
B_{d}^{r}:=\max _{c} \operatorname{deg}^{a}\left(\mathcal{P}_{d, r}\right) .
$$

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{3,1}(x)=x^{3} \\
3=[11]_{2}
\end{gathered}
$$

* Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{3,2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

First Plateau

Polynomial representing r rounds of MiMC_{d} :

$$
\mathcal{P}_{d, r}(x)=F_{r} \circ \ldots F_{1}(x), \text { where } F_{i}=\left(x+c_{i-1}\right)^{d}
$$

Aim: determine

$$
B_{d}^{r}:=\max _{c} \operatorname{deg}^{a}\left(\mathcal{P}_{d, r}\right)
$$

$\begin{array}{ll}\star \text { Round 1: } & B_{3}^{1}=2 \\ & \mathcal{P}_{3,1}(x)=x^{3}\end{array}$

$$
3=[11]_{2}
$$

* Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{3,2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

First Plateau

Polynomial representing r rounds of MiMC_{d} :

$$
\mathcal{P}_{d, r}(x)=F_{r} \circ \ldots F_{1}(x), \text { where } F_{i}=\left(x+c_{i-1}\right)^{d}
$$

Aim: determine

$$
B_{d}^{r}:=\max _{c} \operatorname{deg}^{a}\left(\mathcal{P}_{d, r}\right) .
$$

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{3,1}(x)=x^{3} \\
3=[11]_{2}
\end{gathered}
$$

* Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{3,2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

Definition

There is a plateau whenever $B_{d}^{r}=B_{d}^{r-1}$.

Proposition

If $d=2^{j}-1$, there is always plateau between rounds 1 and 2 :

$$
B_{d}^{2}=B_{d}^{1} .
$$

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$
\mathcal{E}_{d, r}=\left\{d j \bmod \left(2^{n}-1\right) \text { where } j \preceq i, i \in \mathcal{E}_{d, r-1}\right\}
$$

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$
\mathcal{E}_{d, r}=\left\{d j \bmod \left(2^{n}-1\right) \text { where } j \preceq i, i \in \mathcal{E}_{d, r-1}\right\}
$$

Example:

$$
\begin{gathered}
\mathcal{P}_{3,1}(x)=x^{3} \Rightarrow \mathcal{E}_{3,1}=\{3\} . \\
3=[11]_{2} \xrightarrow{\succeq}\left\{\begin{array}{lll}
{[00]_{2}=0} & \xrightarrow{x 3} & 0 \\
{[01]_{2}=1} & \xrightarrow{x 3} & 3 \\
{[10]_{2}=2} & \xrightarrow{x 3} & 6 \\
{[11]_{2}=3} & \xrightarrow{x 3} & 9
\end{array}\right. \\
\mathcal{E}_{3,2}=\{0,3,6,9\}, \\
\mathcal{P}_{3,2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} .
\end{gathered}
$$

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$
\mathcal{E}_{d, r}=\left\{d j \bmod \left(2^{n}-1\right) \text { where } j \preceq i, i \in \mathcal{E}_{d, r-1}\right\}
$$

(a) For MiMC_{3}.

(a) For MiMC_{15}.

(b) For MiMC_{5}.

(b) For MiMC_{17}.

(c) For MiMC_{7}.

(c) For MiMC_{31}.

(d) For MiMC_{9}.

(d) For MiMC_{33}.

Missing exponents when $d=2^{j}-1$

Proposition
Let $i \in \mathcal{E}_{d, r}$, where $d=2^{j}-1$. Then:

$$
\forall i \in \mathcal{E}_{d, r}, i \bmod 2^{j+1} \in\left\{0,1, \ldots 2^{j}\right\} \bigcup\left\{2^{j}+2 \gamma, \gamma=1,2, \ldots 2^{j-1}-1\right\} .
$$

Missing exponents when $d=2^{j}-1$

Proposition

Let $i \in \mathcal{E}_{d, r}$, where $d=2^{j}-1$. Then:

$$
\forall i \in \mathcal{E}_{d, r}, i \bmod 2^{j+1} \in\left\{0,1, \ldots 2^{j}\right\} \bigcup\left\{2^{j}+2 \gamma, \gamma=1,2, \ldots 2^{j-1}-1\right\} .
$$

Example:

* For MiMC_{3}

$$
\forall i \in \mathcal{E}_{3, r}, i \bmod 8 \notin\{5,7\} .
$$

\star For MiMC_{7}

$$
\forall i \in \mathcal{E}_{7, r}, i \bmod 16 \notin\{9,11,13,15\}
$$

(a) For MiMC_{3}.

(b) For MiMC_{7}.

(c) For MiMC_{15}.

(d) For MiMC_{31}.

Missing exponents when $d=2^{j}+1$

Proposition
Let $i \in \mathcal{E}_{d, r}$ where $d=2^{j}+1$ and $j>1$. Then:

$$
\forall i \in \mathcal{E}_{d, r}, i \bmod 2^{j} \in\{0,1\}
$$

Missing exponents when $d=2^{j}+1$
Proposition
Let $i \in \mathcal{E}_{d, r}$ where $d=2^{j}+1$ and $j>1$. Then:

$$
\forall i \in \mathcal{E}_{d, r}, i \bmod 2^{j} \in\{0,1\}
$$

Example:

\star For MiMC_{5}

$$
\forall i \in \mathcal{E}_{5, r}, i \bmod 4 \in\{0,1\}
$$

\star For MiMC_{9}

$$
\forall i \in \mathcal{E}_{9, r}, i \bmod 8 \in\{0,1\} .
$$

(a) For MiMC_{5}.

(b) For MiMC ${ }_{9}$.

(c) For MiMC ${ }_{17}$.

(d) For MiMC 33 .

Missing exponents when $d=2^{j}+1$ (first rounds)

Corollary

Let $i \in \mathcal{E}_{d, r}$ where $d=2^{j}+1$ and $j>1$. Then:

$$
\begin{cases}i \bmod 2^{2 j} \in\left\{\left\{\gamma 2^{j},(\gamma+1) 2^{j}+1\right\}, \gamma=0, \ldots r-1\right\} & \text { if } r \leq 2^{j} \\ i \bmod 2^{j} \in\{0,1\} & \text { if } r \geq 2^{j} .\end{cases}
$$

(a) Round 1

(a) Round 5

(b) Round 2

(b) Round 6

(c) Round 3

(c) Round 7

(d) Round 4

(d) Round $r \geq 8$

Content

Iterated Power Functions:
from Univariate Polynomial Representation to Multivariate Degree

(1)

- Emerging uses in symmetric cryptography
- The example of MiMC
- Definition of multivariate degree
- Missing exponents when $d=2^{j}-1$
- Missing exponents when $d=2^{j}+1$
(3) Bounding the multivariate degree
- Bound when $d=2^{j}-1$
- Bound when $d=2^{j}+1$

Bounding the degree when $d=2^{j}-1$

Note that if $d=2^{j}-1$, then

$$
2^{i} \bmod d \equiv 2^{i \bmod j}
$$

Proposition

Let $d=2^{j}-1$, such that $j \geq 2$. Then,

$$
B_{d}^{r} \leq\left\lfloor r \log _{2} d\right\rfloor-\left(\left\lfloor r \log _{2} d\right\rfloor \bmod j\right) .
$$

Bounding the degree when $d=2^{j}-1$

Note that if $d=2^{j}-1$, then

$$
2^{i} \bmod d \equiv 2^{i \bmod j}
$$

Proposition

Let $d=2^{j}-1$, such that $j \geq 2$. Then,

$$
B_{d}^{r} \leq\left\lfloor r \log _{2} d\right\rfloor-\left(\left\lfloor r \log _{2} d\right\rfloor \bmod j\right)
$$

Note that if $2 \leq j \leq 7$, then

$$
2^{\left\lfloor r \log _{2} d\right\rfloor+1}-2^{j}-1>d^{r} .
$$

Corollary

Let $d \in\{3,7,15,31,63,127\}$. Then,

$$
B_{d}^{r} \leq \begin{cases}\left\lfloor r \log _{2} d\right\rfloor-j & \text { if }\left\lfloor r \log _{2} d\right\rfloor \bmod j=0, \\ \left\lfloor r \log _{2} d\right\rfloor-\left(\left\lfloor r \log _{2} d\right\rfloor \bmod j\right) & \text { else } .\end{cases}
$$

Bounding the degree when $d=2^{j}-1$

Particularity: Plateau when $\left\lfloor r \log _{2} d\right\rfloor \bmod j=j-1$ and $\left\lfloor(r+1) \log _{2} d\right\rfloor \bmod j=0$.

Bound for MiMC_{3}

Bound for MiMC_{7}

Bounding the degree when $d=2^{j}+1$

Note that if $d=2^{j}+1$, then

$$
2^{i} \bmod d \equiv \begin{cases}2^{i \bmod 2 j} & \text { if } i \equiv 0, \ldots, j \bmod 2 j \\ d-2^{(i \bmod 2 j)-j} & \text { if } i \equiv 0, \ldots, j \bmod 2 j\end{cases}
$$

Proposition
Let $d=2^{j}+1$ s.t. $j>1$. Then if $r>1$:

$$
B_{d}^{r} \leq \begin{cases}\left\lfloor r \log _{2} d\right\rfloor-j+1 & \text { if }\left\lfloor r \log _{2} d\right\rfloor \bmod 2 j \in\{0, j-1, j+1\}, \\ \left\lfloor r \log _{2} d\right\rfloor-j & \text { else } .\end{cases}
$$

Bounding the degree when $d=2^{j}+1$

Note that if $d=2^{j}+1$, then

$$
2^{i} \bmod d \equiv \begin{cases}2^{i \bmod 2 j} & \text { if } i \equiv 0, \ldots, j \bmod 2 j \\ d-2^{(i \bmod 2 j)-j} & \text { if } i \equiv 0, \ldots, j \bmod 2 j\end{cases}
$$

Proposition
Let $d=2^{j}+1$ s.t. $j>1$. Then if $r>1$:

$$
B_{d}^{r} \leq \begin{cases}\left\lfloor r \log _{2} d\right\rfloor-j+1 & \text { if }\left\lfloor r \log _{2} d\right\rfloor \bmod 2 j \in\{0, j-1, j+1\}, \\ \left\lfloor r \log _{2} d\right\rfloor-j & \text { else } .\end{cases}
$$

The bound can be refined on the first rounds!

Bounding the degree when $d=2^{j}+1$

Particularity: There is a gap in the first rounds.

Bound for MiMC_{5}

Bound for MiMC_{9}

Music in MiMC_{3} and Conjecture

-. Patterns in sequence $\left(\left\lfloor r \log _{2} 3\right\rfloor\right)_{r>0}$: denominators of semiconvergents of $\log _{2} 3 \simeq 1.58496$

$$
\begin{gathered}
\mathfrak{D}=\{1, \boxed{2}, 3,5,7, \boxed{12}, 17,29,41,53,94,147,200,253,306,359, \ldots\}, \\
\log _{2} 3 \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^{a} \simeq 3^{b}
\end{gathered}
$$

ภ. Music theory:

- perfect octave 2:1

ر perfect fifth $3: 2$

$$
2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^{7} \simeq\left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad 7 \text { octaves } \sim 12 \text { fifths }
$$

Music in MiMC_{3} and Conjecture

\therefore Patterns in sequence $\left(\left\lfloor r \log _{2} 3\right\rfloor\right)_{r>0}$: denominators of semiconvergents of $\log _{2} 3 \simeq 1.58496$

$$
\begin{gathered}
\mathfrak{D}=\{1, \boxed{2}, 3,5,7, \boxed{12}, 17,29,41,53,94,147,200,253,306,359, \ldots\} \\
\log _{2} 3 \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^{a} \simeq 3^{b}
\end{gathered}
$$

\& Music theory:

- perfect octave $2: 1$

」 perfect fifth 3:2

$$
2^{19} \simeq 3^{12} \Leftrightarrow 2^{7} \simeq\left(\frac{3}{2}\right)^{12} \Leftrightarrow 7 \text { octaves } \sim 12 \text { fifths }
$$

Observation

Let t be an integer s.t. $1 \leq t \leq 21$. Then

$$
\forall x \in \mathbb{Z} / 3^{t} \mathbb{Z}, \exists \varepsilon_{2}, \ldots, \varepsilon_{2 t+2} \in\{0,1\}, \text { s.t. } x=\sum_{j=2}^{2 t+2} \varepsilon_{j} 4^{j} \bmod 3^{t}
$$

Conclusions and Perspectives

How to set up a distinguisher for MiMC_{d} using sparse univariate representation?

* missing exponents in the univariate representation of MiMC_{d}.

Conclusions and Perspectives

How to set up a distinguisher for MiMC_{d} using sparse univariate representation?

* missing exponents in the univariate representation of MiMC_{d}.

* bounds on the multivariate degree

Conclusions and Perspectives

How to set up a distinguisher for MiMC_{d} using sparse univariate representation?

* missing exponents in the univariate representation of MiMC_{d}.

* bounds on the multivariate degree

\star Higher-Order differential attacks

Conclusions and Perspectives

How to set up a distinguisher for MiMC_{d} using sparse univariate representation?

* missing exponents in the univariate representation of MiMC_{d}.

* bounds on the multivariate degree

\star Higher-Order differential attacks

Conclusions and Perspectives

How to set up a distinguisher for MiMC_{d} using sparse univariate representation?

* missing exponents in the univariate representation of MiMC_{d}.

* bounds on the multivariate degree

\star Higher-Order differential attacks
* tracing exponents: conjecture?

\downarrow

*

Conclusions and Perspectives

How to set up a distinguisher for MiMC_{d} using sparse univariate representation?

* missing exponents in the univariate representation of MiMC_{d}.

* bounds on the multivariate degree

\star Higher-Order differential attacks
* tracing exponents: conjecture?

\downarrow

More details on eprint.iacr.org/2022/366 (accepted at DCC23)

Thanks for your attention

