Statistical properties of Butterfly-like constructions

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

Fq16, São Carlos, Brazil July 11th, 2025

Statistical properties of Butterfly-like constructions

Clémence Bouvier

Original Butterfly

Introduced by [Perrin, Udovenko and Biryukov, CRYPTO 2016] over binary fields, $\mathbb{F}_{2^n}^2$, *n* odd.

Classification 00000000

A new context

New symmetric primitives

A new context

Traditional case

- * Operations: logical gates or CPU instructions
- ★ Field size:

$$\mathbb{F}_2^n$$
, with $n \simeq 4,8$

 \star Cryptanalysis: decades

Arithmetization-Oriented

- * Operations: large finite-field arithmetic
- \star Field size:

$$\mathbb{F}_q, ext{ with } q \in \{2^n, p\}, p \simeq 2^n, n \geq 32$$

 $\star~$ Cryptanalysis: \leq 8 years

Butterflies in the context of ZKP?

- \star Flystel a degenerated case of Butterfly
- * Differential properties: solving an open problem
- \star Linear properties: link with cohomology

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, CRYPTO 2023]

$$\begin{cases} y_1 = (x_2 + \alpha y_2)^3 + \beta y_2^3 \\ y_2 = (x_1 + \beta x_2^3)^{1/3} + \alpha x_2 \,. \end{cases}$$

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, CRYPTO 2023]

$$\begin{cases} y_1 = (x_2 + \alpha y_2)^d + \beta y_2^3 \\ y_2 = (x_1 + \beta x_2^3)^{1/d} + \alpha x_2 \,. \end{cases}$$

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, CRYPTO 2023]

$$\begin{cases} y_1 = (x_2 + \alpha y_2)^d + \beta y_2^2 \\ y_2 = (x_1 + \beta x_2^2)^{1/d} + \alpha x_2 \,. \end{cases}$$

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, CRYPTO 2023]

$$\begin{cases} y_1 = (x_2 - y_2)^d + \beta y_2^2 \\ y_2 = (x_1 + \beta x_2^2)^{1/d} - x_2 \end{cases}$$

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, CRYPTO 2023]

$$\begin{cases} y_1 = (x_2 - y_2)^d + \beta y_2^2 \\ y_2 = (x_1 + \beta x_2^2)^{1/d} - x_2 \end{cases}$$

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, CRYPTO 2023]

$$\begin{cases} y_1 = (x_2 - y_2)^d + Q_\delta(y_2) \\ y_2 = (x_1 - Q_\gamma(x_2))^{1/d} - x_2 \end{cases}$$

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, CRYPTO 2023]

Classification 00000000

Statistical properties

★ Differential properties

Statistical properties

★ Differential properties

Definition Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function. The Differential uniformity δ_F is given by $\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^n, F(x + a) - F(x) = b\}|$

Statistical properties

★ Differential properties

Definition Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function. The Differential uniformity δ_F is given by $\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^n, F(x + a) - F(x) = b\}|$

★ Linear properties

Definition

Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function and ω a primitive element. The Linearity \mathcal{L}_F is the highest Walsh coefficient.

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v\neq 0} \left| \sum_{x \in \mathbb{F}_2^n} (-1)^{(\langle v,\mathsf{F}(x) \rangle \oplus \langle u,x \rangle)} \right|$$

Statistical properties

★ Differential properties

Definition Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function. The Differential uniformity δ_F is given by $\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^n, F(x + a) - F(x) = b\}|$

★ Linear properties

Definition

Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function and ω a primitive element. The Linearity \mathcal{L}_F is the highest Walsh coefficient.

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v\neq 0} \left| \sum_{x \in \mathbb{F}_{p}^{n}} e^{\left(\frac{2i\pi}{p}\right)(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$$

Proposition [Bouvier et al., 2023]

The Flystel

$$\mathsf{F}: \mathbb{F}_p^2 \to \mathbb{F}_p^2, \ (x_1, x_2) \mapsto ((x_1 - x_2)^d + \mathsf{Q}_{\gamma}(x_1) \ , \ (x_1 - x_2)^d + \mathsf{Q}_{\delta}(x_2))$$

has differential uniformity

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}| \leq d-1.$$

Differential Properties

Proposition [Bouvier et al., 2023]

The Flystel

$$\mathsf{F}: \mathbb{F}_{\rho}^{2} \to \mathbb{F}_{\rho}^{2}, \ (x_{1}, x_{2}) \mapsto ((x_{1} - x_{2})^{d} + \mathsf{Q}_{\gamma}(x_{1}) \ , \ (x_{1} - x_{2})^{d} + \mathsf{Q}_{\delta}(x_{2}))$$

has differential uniformity

$$\delta_{\mathsf{F}} = \max_{a\neq 0,b} |\{x \in \mathbb{F}_p^2, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}| \leq d-1.$$

Solving an open problem since 2014 on APN permutations over \mathbb{F}_p^2

Existence of APN permutations

F is Almost Perfect Nonlinear iff

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}| = 2.$$

Flystel in \mathbb{F}_p with x^3 : APN permutation

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with deg(f) = d. Then

 $\mathcal{L}_f \leq (\textit{d}-1)\sqrt{p}$

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_{p}[x]$ be a univariate polynomial with deg(f) = d. Then

 $\mathcal{L}_{\mathsf{f}} \leq (\textit{d} - 1)\sqrt{p}$

Exponential sums

* Direct applications of results for exponential sums [Beyne and Bouvier, 2024]

Classification 00000000

Exponential sums

- * Direct applications of results for exponential sums [Beyne and Bouvier, 2024]
- \star 3 different results (generalization of Weil bound)... for 3 important constructions
 - * Deligne, 1974
 - $\star\,$ Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction

3-round Feistel network

Generalization of the Flystel construction

Functions with 2 variables

$$\mathsf{F} \in \mathbb{F}_q[\mathbf{x}_1, \mathbf{x}_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_{\mathsf{F}} \leq C \times q$$

Classification 00000000

Exponential sums

- * Direct applications of results for exponential sums [Beyne and Bouvier, 2024]
- \star 3 different results (generalization of Weil bound)... for 3 important constructions
 - * Deligne, 1974
 - $\star\,$ Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction

3-round Feistel network

Generalization of the Flystel construction

Functions with 2 variables

$$\mathsf{F} \in \mathbb{F}_q[\mathbf{x}_1, \mathbf{x}_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_{\mathsf{F}} \leq C \times q$$

* Solving conjecture on the linearity of the Flystel construction (for $d \le \log p$)

$$\mathcal{L}_{\mathsf{F}} \leq (d-1)p$$
 .

Solving conjecture

Classification •0000000

Can we go further?

 \star Is the Flystel an optimal construction?

- * Statistical properties (differential and linear)
- ★ ZK-performance
- * How to classify Butterfly-like constructions?

Back to TU decomposition

$$\begin{cases} y_1 = (x_1 + \alpha x_2)^3 + \beta x_2^3 \\ y_2 = (x_2 + \alpha x_1)^3 + \beta x_1^3. \end{cases}$$

Context 00 Recent results 0000000 Classification 0000000

Back to TU decomposition

Context 00 Recent results 0000000 Classification 0000000

Back to TU decomposition

Specific cases

Specific cases

\star Asymmetric TU with

s.t.
$$F: \mathbb{F}_{p}^{2} \to \mathbb{F}_{p}^{2}, (x_{1}, x_{2}) \mapsto (y_{1}, y_{2})$$
$$\begin{cases} y_{1} &= G_{1}(x_{1}, x_{2}) + H_{1}(x_{1}, x_{2}) \\ y_{2} &= H_{2}(x_{1}, x_{2}) , \end{cases}$$

 \star Symmetric TU with

s.t.

$$\begin{aligned}
\mathsf{F} : \mathbb{F}_{\rho}^{2} \to \mathbb{F}_{\rho}^{2}, (x_{1}, x_{2}) \mapsto (y_{1}, y_{2}) \\
\begin{cases}
y_{1} &= G_{1}(x_{1}, x_{2}) + H_{1}(x_{1}, x_{2}) \\
y_{2} &= G_{2}(x_{1}, x_{2}) + H_{2}(x_{1}, x_{2}),
\end{aligned}$$

where

- \star G_i: functions with only cubic terms
- \star *H_i*: functions with only quadratic terms

What does "efficient" mean for Zero-Knowledge Proofs?

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

What does "efficient" mean for Zero-Knowledge Proofs? "It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

 $y = (ax + b)^3(cx + d) + ex$

$t_0 = a \cdot x$	$t_3 = t_2 \times t_1$	$t_6 = t_3 \times t_5$
$t_1 = t_0 + b$	$t_4 = c \cdot x$	$t_7 = e \cdot x$
$t_2 = t_1 imes t_1$	$t_5 = t_4 + d$	$t_8 = t_6 + t_7$

What does "efficient" mean for Zero-Knowledge Proofs? "It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

 $y = (ax + b)^3(cx + d) + ex$

$t_0 = a \cdot x$	$t_3 = t_2 \times t_1$	$t_6 = t_3 \times t_5$
$t_1 = t_0 + b$	$t_4 = c \cdot x$	$t_7 = e \cdot x$
$t_2 = t_1 \times t_1$	$t_5 = t_4 + d$	$t_8 = t_6 + t_7$

3 constraints

Statistical properties of Butterfly-like constructions

ZK performance

ZK performance

Conclusions and Perspectives

- * Butterfly-like constructions in \mathbb{F}_p :
 - \star Nice results for the differential uniformity and the linearity
 - $\star\,$ Interesting structures for ZKP

Conclusions and Perspectives

- * Butterfly-like constructions in \mathbb{F}_p :
 - \star Nice results for the differential uniformity and the linearity
 - $\star\,$ Interesting structures for ZKP
- ★ Future works:
 - * Can we systematise such a classification?
 - * And extend it to other properties?

Conclusions and Perspectives

- * Butterfly-like constructions in \mathbb{F}_p :
 - \star Nice results for the differential uniformity and the linearity
 - $\star\,$ Interesting structures for ZKP
- ★ Future works:
 - * Can we systematise such a classification?
 - * And extend it to other properties?

