Cryptanalysis and design of symmetric primitives defined over large finite fields

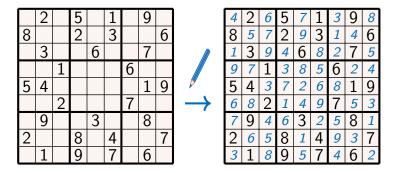
Clémence Bouvier

November 27th, 2023

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

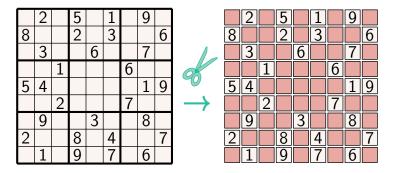
A new context

Unsolved Sudoku



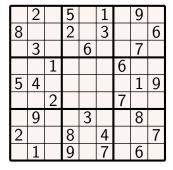
Unsolved Sudoku

Solved Sudoku



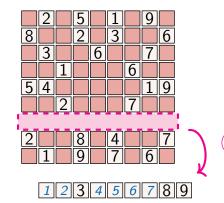
Unsolved Sudoku

Grid cutting

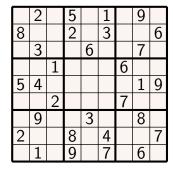


A new context

Unsolved Sudoku

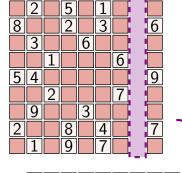


Rows checking



A new context

Unsolved Sudoku



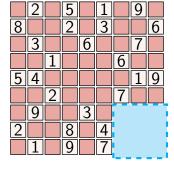
123456789

Columns checking

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

A new context

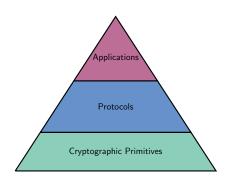
Unsolved Sudoku



1 2 3 4 5 6 7 8 9

Squares checking

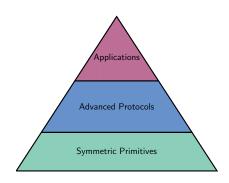
A need for new primitives



A need for new primitives

Protocols requiring new primitives:

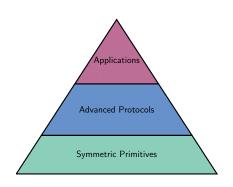
- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- ★ ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs



A need for new primitives

Protocols requiring new primitives:

- * MPC: Multiparty Computation
- ★ FHE: Fully Homomorphic Encryption
- ★ ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs



Problem: Designing new symmetric primitives

And analyse their security!

Block ciphers

★ input: *n*-bit block

$$x \in \mathbb{F}_2^n$$

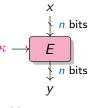
⋆ parameter: k-bit key

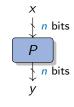
$$\kappa \in \mathbb{F}_2^k$$

⋆ output: n-bit block

$$y = E_{\kappa}(x) \in \mathbb{F}_2^n$$

 \star symmetry: E and E^{-1} use the same κ





(a) Block cipher

(b) Random permutation

Block ciphers

★ input: n-bit block

$$x \in \mathbb{F}_2^n$$

⋆ parameter: k-bit key

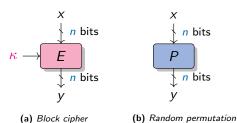
$$\kappa \in \mathbb{F}_2^k$$

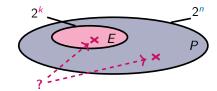
⋆ output: n-bit block

$$y = E_{\kappa}(x) \in \mathbb{F}_2^n$$

 \star symmetry: E and E^{-1} use the same κ

A block cipher is a family of 2^k permutations of \mathbb{F}_2^n .

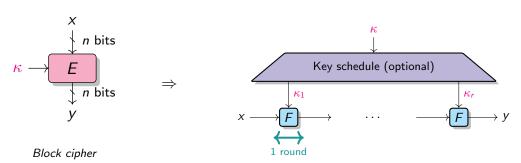


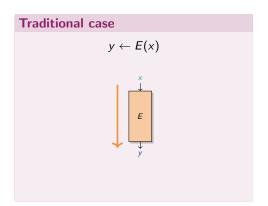


Iterated constructions

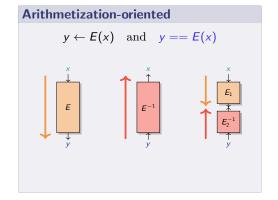
How to build an efficient block cipher?

By iterating a round function.





A new context 00000000



Traditional case

A new context 00000000

$$y \leftarrow E(x)$$

* Optimized for: implementation in software/hardware

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

* Optimized for: integration within advanced protocols

Traditional case

A new context 00000000

$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4.8$

Ex: Field of AES: \mathbb{F}_{2^n} where n=8

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$
 - Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_n where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

Traditional case

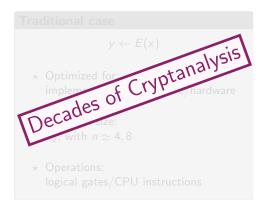
$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4.8$
- * Operations: logical gates/CPU instructions

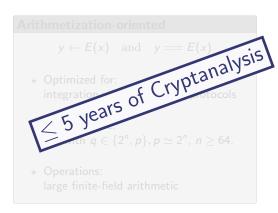
Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$
- * Operations: large finite-field arithmetic



A new context 00000000



Design

A new context

Introducing the link between CCZ-equivalence and Arithmetization-Orientation

Designing a new S-Box: the Flystel

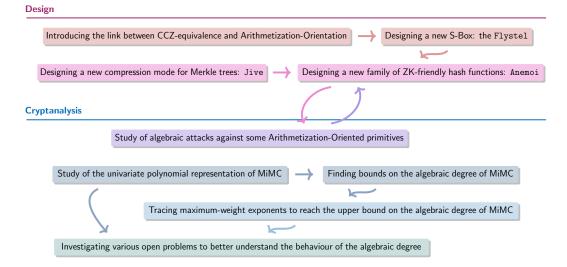
Designing a new compression mode for Merkle trees: Jive Designing a new family of ZK-friendly hash functions: Anemoi

Cryptanalysis

A new context

Overview of the contributions

Introducing the link between CCZ-equivalence and Arithmetization-Orientation Designing a new S-Box: the Flystel Designing a new compression mode for Merkle trees: Jive Designing a new family of ZK-friendly hash functions: Anemoi Cryptanalysis Study of algebraic attacks against some Arithmetization-Oriented primitives



Design

New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode, Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov, Willems, CRYPTO 2023

Cryptanalysis

Algebraic attacks against some arithmetization-oriented primitives, Bariant, Bouvier, Leurent, Perrin, ToSC, 2022

On the algebraic degree of iterated power functions, Bouvier, Canteaut, Perrin, DCC, 2023

Coefficient Grouping for Complex Affine Layers, Lui, Grassi, Bouvier, Meier, Isobe, CRYPTO 2023

Design

A new context

New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode, Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov, Willems, CRYPTO 2023

Cryptanalysis

On the algebraic degree of iterated power functions, Bouvier, Canteaut, Perrin, DCC, 2023

A new context

Design of Anemoi

Link between CCZ-equivalence and Arithmetization-Orientation

Design of Anemoi

Link between CCZ-equivalence and Arithmetization-Orientation

A new S-Box: the Flystel

Design of Anemoi

Link between CCZ-equivalence and Arithmetization-Orientation

A new S-Box: the Flystel

A new family of ZK-friendly hash functions: Anemoi

What does "efficient" mean for Zero-Knowledge Proofs?

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + c_4$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

3 constraints

Need: verification using few multiplications.

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

 \sim *E*: low degree

 \sim E: low degree

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

$$y \leftarrow E(x)$$

 \sim E: low degree

 \sim E: low degree

* First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]

$$y \leftarrow E(x)$$

 \sim *E*: high degree

$$x == E^{-1}(y)$$

 $\sim E^{-1}$: low degree

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

$$y \leftarrow E(x)$$

 $y \leftarrow E(x)$ $\sim E$: low degree

 \sim E: low degree

* First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]

$$y \leftarrow E(x)$$

 \sim *E*: high degree

Our approach: using $(u, v) = \mathcal{L}(x, y)$, where \mathcal{L} is linear

$$y \leftarrow F(x)$$

 $y \leftarrow F(x)$ $\sim F$: high degree

 \sim G: low degree

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\digamma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\digamma^{-1}} \ .$$

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\boldsymbol{\digamma}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\boldsymbol{\digamma}^{-1}} \ .$$

Definition [Carlet, Charpin and Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_F = \mathcal{L}(\Gamma_G) + c$$
, where \mathcal{L} is linear.

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it G}$.

Differential uniformity

Maximum value of the DDT

$$\delta_{F} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{q}^{m}, F(x+a) - F(x) = b\}|$$

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it G}$.

Differential uniformity

Maximum value of the DDT

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}|$$

 \star Linear properties are the same: $\mathcal{W}_{\textit{F}} = \mathcal{W}_{\textit{G}}$.

Linearity

Maximum value of the LAT

$$\mathcal{W}_{\mathcal{F}} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_{2^n}^m} (-1)^{a \cdot x + b \cdot \mathcal{F}(x)} \right|$$

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

If $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Example

in \mathbb{F}_p where

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd$

If $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Example

in \mathbb{F}_p where

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

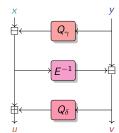
 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd$

The Flystel

Butterfly + Feistel \Rightarrow Flystel

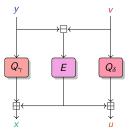
A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation



Open Flystel \mathcal{H} .

Low-Degree function

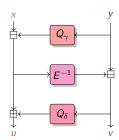


Closed Flystel \mathcal{V} .

Butterfly + Feistel \Rightarrow Flystel

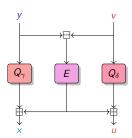
A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation



function

Low-Degree



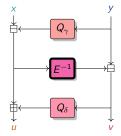
Open Flystel \mathcal{H} .

Closed Flystel \mathcal{V} .

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}})$$
 s.t. $((x, y), (u, v)) = \mathcal{L}(((v, y), (x, u)))$

* High-Degree Evaluation.

High-Degree permutation



Open Flystel \mathcal{H} .

Example

if $E: x \mapsto x^5$ in \mathbb{F}_p where

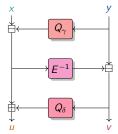
p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

then $E^{-1}: x \mapsto x^{5^{-1}}$ where

 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002$ 217f0e679998f19933333332ccccccd

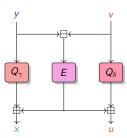
- * High-Degree Evaluation.
- * Low-Degree Verification.

$$(u,v) == \mathcal{H}(x,y) \Leftrightarrow (x,u) == \mathcal{V}(y,v)$$



Open Flystel \mathcal{H} .

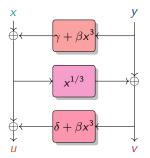
Low-Degree function



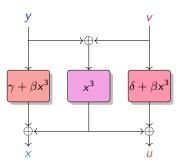
Closed Flystel \mathcal{V} .

Flystel in \mathbb{F}_{2^n} , n odd

$$Q_{\gamma}(x) = \gamma + \beta x^3$$
, $Q_{\delta}(x) = \delta + \beta x^3$, and $E(x) = x^3$

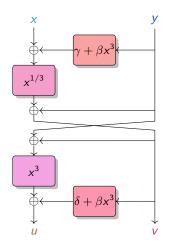


Open Flystel₂.



Closed Flystel₂.

Properties of Flystel in \mathbb{F}_{2^n} , n odd



Degenerated Butterfly.

Introduced by [Perrin et al. 2016].

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

* Differential properties

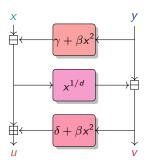
$$\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$$

* Linear properties

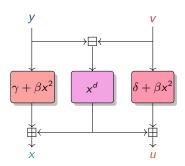
$$W_{\mathcal{H}} = W_{\mathcal{V}} = 2^{n+1}$$

- * Algebraic degree
 - * Open Flystel₂: $deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $deg_{V} = 2$

$$Q_{\gamma}(x) = \gamma + \beta x^2$$
, $Q_{\delta}(x) = \delta + \beta x^2$, and $E(x) = x^d$



usually d = 3 or 5.



Open Flystel,

Closed Flystel,

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{p}^{2}, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le d - 1$$

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le d - 1$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{\rho}^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le d - 1$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

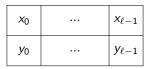
* Linear properties

Conjecture:

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_{p}^{2}} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p}\right) \right| \leq p \log p ?$$

The internal state of Anemoi and its basic operations.

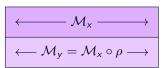
A Substitution-Permutation Network with:



(a) Internal state.

 D^i

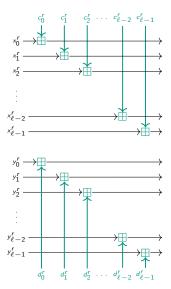
(b) The constant addition.

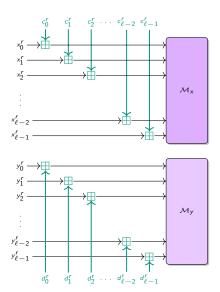


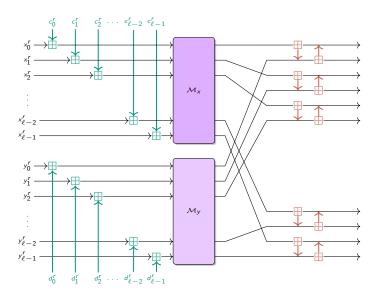
(c) The diffusion layer.

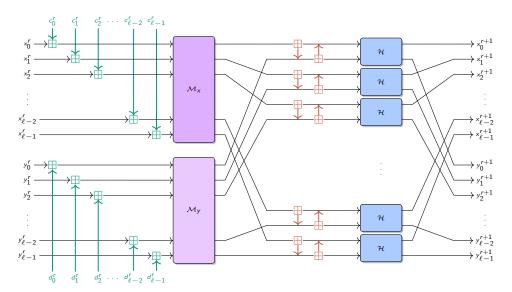
(d) The Pseudo-Hadamard Transform.

(e) The S-box layer.









Number of rounds

$$Anemoi_{q,d,\ell} = \mathcal{M} \circ R_{n_r-1} \circ ... \circ R_0$$

★ Choosing the number of rounds

$$n_r \ge \max \left\{ 8, \underbrace{\min(5, 1+\ell)}_{\text{security margin}} + 2 + \min \left\{ r \in \mathbb{N} \mid \left(\frac{4\ell r + \kappa_d}{2\ell r} \right)^2 \ge 2^s \right\} \right\}.$$

$d(\kappa_d)$	3 (1)	5 (2)	7 (4)	11 (9)
$\ell=1$	21	21	20	19
ℓ = 2	14	14	13	13
ℓ = 3	12	12	12	11
ℓ = 4	12	12	11	11

Number of rounds of Anemoi (s = 128).

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + c$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

3 constraints

Some Benchmarks

	$m (= 2\ell)$	RP^1	Poseidon ²	Griffin ³	Anemoi
	2	208	198	-	76
R1CS	4	224	232	112	96
	6	216	264	-	120
	8	256	296	176	160
Plonk	2	312	380	-	191
	4	560	832	260	316
IOIIK	6	756	1344	-	460
	8	1152	1920	574	648
	2	156	300	-	126
AIR	4	168	348	168	168
	6	162	396	-	216
	8	192	456	264	288

	$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi
R1CS	2	240	216	-	95
	4	264	264	110	120
	6	288	315	-	150
	8	384	363	162	200
Plonk	2	320	344	-	212
	4	528	696	222	344
	6	768	1125	-	496
	8	1280	1609	492	696
AIR	2	200	360	-	210
	4	220	440	220	280
	6	240	540	-	360
	8	320	640	360	480

(a) when d = 3.

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

³GRIFFIN [Grassi et al., CRYPTO23]

¹Rescue [Aly et al., ToSC20]

²Poseidon [Grassi et al., USENIX21]

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- * Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:

New S-box: FlystelNew mode: Jive

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- * Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:

New S-box: FlystelNew mode: Jive

Related works

- * AnemoiJive₃ with TurboPlonK [Liu et al., 2022]
- * Arion [Roy, Steiner and Trevisani, 2023]
- * APN permutations over prime fields [Budaghyan and Pal, 2023]

Study of the corresponding sparse univariate polynomials

Cryptanalysis of MIMC

Study of the corresponding sparse univariate polynomials

Bounding the algebraic degree

Cryptanalysis of MIMC

Study of the corresponding sparse univariate polynomials

Bounding the algebraic degree

Tracing maximum-weight exponents reaching the upper bound

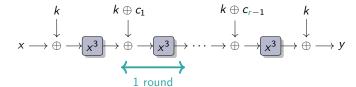
Cryptanalysis of MIMC

Study of the corresponding sparse univariate polynomials Bounding the algebraic degree Tracing maximum-weight exponents reaching the upper bound Study of higher-order differential attacks

The block cipher MiMC

Cryptanalysis of MiMC 0000000000000000000

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., AC16]:
 - * *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - * *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - \star decryption : replacing x^3 by x^5 where $s = (2^{n+1} - 1)/3$



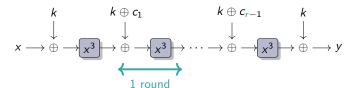
The block cipher MiMC

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., AC16]:
 - * *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - * *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - \star decryption : replacing x^3 by x^5 where $s = (2^{n+1} - 1)/3$

$$r := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.



The block cipher MiMC

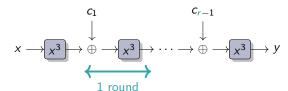
Cryptanalysis of MiMC 0000000000000000000

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., AC16]:
 - * *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - * *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - \star decryption : replacing x^3 by x^s where $s = (2^{n+1} - 1)/3$

$$r := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.



Cryptanalysis of MiMC

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \left\{ \operatorname{wt}(\underline{u}) : \underline{u} \in \mathbb{F}_2^n, a_{\underline{u}} \neq 0 \right\}.$$

Algebraic degree - 1st definition

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \left\{ \operatorname{wt}(\underline{u}) : \underline{u} \in \mathbb{F}_2^n, a_{\underline{u}} \neq 0 \right\}.$$

If
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^m$$
, with $F(x) = (f_1(x), \dots f_m(x))$, then

$$\deg^a(F) = \max\{\deg^a(f_i), \ 1 \le i \le m\} \ .$$

Algebraic degree - 1st definition

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

```
Example: ANF of x \mapsto x^3 in \mathbb{F}_{2^{11}}
```

```
 \begin{pmatrix} (x_0x_{10} + x_0 + x_1x_5 + x_1x_9 + x_2x_7 + x_2x_9 + x_2x_{10} + x_3x_4 + x_3x_5 + x_4x_8 + x_4x_9 + x_5x_{10} + x_6x_7 + x_6x_{10} + x_7x_8 + x_9x_{10}, \\ x_0x_1 + x_0x_5 + x_2x_5 + x_2x_6 + x_3x_9 + x_2x_{10} + x_4 + x_5x_9 + x_5x_9 + x_7x_8 + x_7x_9 + x_7 + x_{10}, \\ x_0x_1 + x_0x_2 + x_0x_{10} + x_1x_5 + x_1x_6 + x_1x_9 + x_2x_7 + x_3x_4 + x_3x_7 + x_4x_5 + x_4x_8 + x_4x_{10} + x_5x_{10} + x_6x_7 + x_6x_8 + x_6x_9 + x_7x_{10} + x_8 + x_9x_{10}, \\ x_0x_3 + x_0x_6 + x_0x_7 + x_1 + x_2x_5 + x_2x_6 + x_2x_8 + x_2x_{10} + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_6 + x_4 + x_5x_8 + x_5x_{10} + x_6x_9 + x_7x_9 + x_7 + x_8x_9 + x_{10}, \\ x_0x_2 + x_0x_4 + x_1x_2 + x_1x_6 + x_1x_7 + x_2x_9 + x_2x_{10} + x_3x_5 + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_9 + x_5 + x_6x_8 + x_7x_8 + x_8x_9 + x_8x_{10}, \\ x_0x_3 + x_0x_4 + x_1x_2 + x_1x_3 + x_2x_5 + x_2x_6 + x_2x_7 + x_2x_{10} + x_3x_5 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_9 + x_5x_9 + x_7x_8 + x_7x_9 + x_7x_{10} + x_9, \\ x_0x_3 + x_0x_6 + x_1x_4 + x_1x_7 + x_1x_8 + x_2 + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_9 + x_5x_6 + x_5x_9 + x_7x_{10} + x_9x_7 + x_{10} + x_9x_9 + x_{10}, \\ x_0x_7 + x_0x_8 + x_1x_6 + x_1x_8 + x_1x_9 + x_2x_3 + x_2x_7 + x_2x_8 + x_3x_1 + x_4x_9 + x_4x_1 + x_5x_6 + x_5x_8 + x_5x_1 + x_6x_9 + x_7x_{10} + x_8x_9 + x_9x_{10}, \\ x_0x_4 + x_0x_8 + x_1x_6 + x_1x_8 + x_1x_9 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_9 + x_4x_9 + x_4x_9 + x_4x_9 + x_4x_1 + x_5x_6 + x_5x_8 + x_5x_{10} + x_6 + x_7x_9 + x_8x_9 + x_9x_{10}, \\ x_0x_4 + x_0x_8 + x_1x_6 + x_1x_8 + x_1x_9 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_9 + x_4x_9 + x_5x_6 + x_5x_9 + x_6x_1 + x_6x_9 + x_7x_{10} + x_9x_9 + x_9x_{10}, \\ x_0x_1 + x_0x_8 + x_1x_6 + x_1x_8 + x_1x_9 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_9 + x_4x_9 + x_5x_6 + x_5x_9 + x_6x_7 + x_6x_9 + x_7x_{10} + x_9x_9 + x_9x_{10}, \\ x_0x_1 + x_0x_8 + x_1x_8 + x_1x_9 + x_2x_8 + x_2x_9 + x_3x_4 + x_3x_7 + x_3x_9 + x_3x_9 + x_5x_7 + x_5x_8 + x_5x_{10} + x_6x_9 + x_7x_{10} + x_9x_9 + x_9x_{10}, \\ x_0x_1 + x_0x_1 + x_1x_1 + x_1x_2 + x_1x_1 + x_1x_1 + x_1x_2 + x_1
```

Algebraic degree - 2nd definition

Cryptanalysis of MiMC

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^{n}-1} b_{i} x^{i}; b_{i} \in \mathbb{F}_{2^{n}}$$

Proposition

Algebraic degree of $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^a(F) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^n, \ \operatorname{and} \ b_i \ne 0\}$$

Cryptanalysis of MiMC

Algebraic degree - 2nd definition

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Proposition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^a(F) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^n, \text{ and } b_i \ne 0\}$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg^a(F) \leq n-1$$

Higher-Order differential attacks

Cryptanalysis of MiMC

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n-1

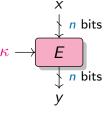
Higher-Order differential attacks

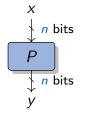
Exploiting a low algebraic degree

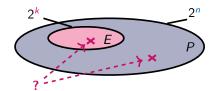
For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n-1







- (a) Block cipher (b) Random permutation
- Cryptanalysis and design of symmetric primitives defined over large finite fields

First Plateau

Polynomial representing r rounds of MIMC_d:

$$\mathcal{P}_{d,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^d$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 d \rceil$$
.

Aim: determine

$$B_{\mathbf{d}}^{r} := \max_{c} \deg^{a}(\mathcal{P}_{\mathbf{d},r}) .$$

First Plateau

Cryptanalysis of MiMC

Polynomial representing r rounds of MIMC_d:

$$\mathcal{P}_{d,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^d$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 \frac{d}{\rceil} \rceil$$
.

Aim: determine

$$B_{\mathbf{d}}^{r} := \max_{c} \deg^{a}(\mathcal{P}_{\mathbf{d},r}) .$$

Example: when d = 3

* Round 1: $B_3^1 = 2$

$$\mathcal{P}_{3,1}(x)=x^3$$

$$3 = [11]_2$$

First Plateau

Polynomial representing r rounds of MIMC_d:

$$\mathcal{P}_{d,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^d$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 d \rceil$$
.

Aim: determine

$$B_{\mathbf{d}}^{\mathbf{r}} := \max_{c} \deg^{a}(\mathcal{P}_{\mathbf{d},\mathbf{r}})$$
.

Example: when d = 3

* Round 1: $B_3^1 = 2$

 $\mathcal{P}_{3,1}(x) = x^3$

 $3 = [11]_2$

* Round 2: $B_3^2 = 2$

 $\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$

 $9 = [1001]_2 6 = [110]_2 3 = [11]_2$

Observed degree

Definition

There is a **plateau** between rounds r and r+1 whenever:

$$B_{\mathbf{d}}^{r+1} = B_{\mathbf{d}}^{r} .$$

Proposition

If $d = 2^j - 1$, there is always **plateau** between rounds 1 and 2:

$$B_{\operatorname{d}}^2 = B_{\operatorname{d}}^1 \ .$$

Observed degree

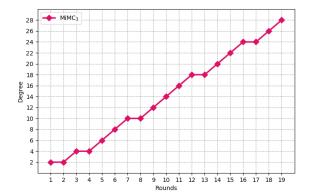
Definition

There is a **plateau** between rounds r and r+1 whenever:

$$B_{\operatorname{d}}^{r+1} = B_{\operatorname{d}}^{r} \ .$$

Proposition

If $d = 2^j - 1$, there is always **plateau** between rounds 1 and 2:



Algebraic degree observed for n = 31.

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{d,r} = \{ \frac{d}{x} \text{ j mod } (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{d,r-1} \}$$

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{d,r} = \{ d \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{d,r-1} \}$$

Example

$$\mathcal{P}_{3,1}(x) = x^3$$
 so $\mathcal{E}_{3,1} = \{3\}$.

$$3 = [11]_2 \quad \xrightarrow{\text{cover}} \quad \begin{cases} [00]_2 = 0 & \xrightarrow{\times 3} & 0 \\ [01]_2 = 1 & \xrightarrow{\times 3} & 3 \\ [10]_2 = 2 & \xrightarrow{\times 3} & 6 \\ [11]_2 = 3 & \xrightarrow{\times 3} & 9 \end{cases}$$

$$\mathcal{E}_{3,2} = \{0, 3, 6, 9\}$$
, indeed $\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$.

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

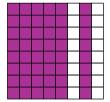
$$\mathcal{E}_{d,r} = \{ d \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{d,r-1} \}$$

Missing exponents: no exponent $2^{2k} - 1$

Proposition

$$\forall i \in \mathcal{E}_{3,r}, i \not\equiv 5,7 \mod 8$$

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
	25						
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
	49						
56	57	58	59	60	61	62	63



Representation exponents.

Missing exponents mod8.

Missing exponents when $d = 2^{j} - 1$

★ For MIMC₃

 $i \mod 8 \notin \{5,7\}$.

⋆ For MIMC₇

 $i \mod 16 \not\in \{9, 11, 13, 15\}$.

★ For MIMC₁₅

 $i \mod 32 \notin \{17, 19, 21, 23, 25, 27, 29, 31\}$.

★ For MIMC₃₁

 $i \mod 64 \notin \{33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63\}$.

(a) For MIMC3.

(c) For MIMC₁₅.

(d) For MIMC₃₁.

Proposition

Let $i \in \mathcal{E}_{d,r}$, where $d = 2^j - 1$. Then:

$$\forall \, i \in \mathcal{E}_{d,r}, \, \, i \, \operatorname{mod} \, 2^{j+1} \in \left\{0, 1, \dots 2^{j}\right\} \, \, \operatorname{U} \, \, \left\{2^{j} + 2\gamma, \gamma = 1, 2, \dots 2^{j-1} - 1\right\} \, .$$

Missing exponents when $d = 2^j + 1$

★ For MIMC₅

 $i \mod 4 \in \{0,1\}$.

★ For MIMC₉

 $i \mod 8 \in \{0,1\}$.

★ For MIMC₁₇

 $i \mod 16 \in \{0,1\}$.

★ For MIMC₃₃

 $i \mod 32 \in \{0,1\}$.

- (a) For MIMC₅.
- (b) For MIMC₉.

- (c) For $MIMC_{17}$.
- (d) For $MIMC_{33}$.

Proposition

Let $i \in \mathcal{E}_{d,r}$ where $d = 2^j + 1$ and j > 1. Then:

 $\forall i \in \mathcal{E}_{d,r}, i \mod 2^j \in \{0,1\}$.

Bounding the degree

Theorem

After r rounds of MIMC₃, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$

Bounding the degree

Theorem

After r rounds of MIMC₃, the algebraic degree is

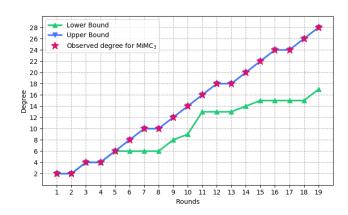
$$B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$

If
$$3^r < 2^n - 1$$
:

* A lower bound

$$B_3^r \ge \max\{\operatorname{wt}(3^i), i \le r\}$$

 Upper bound reached for almost 16265 rounds



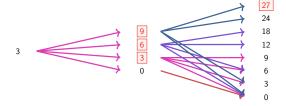
Cryptanalysis of MiMC

Tracing exponents

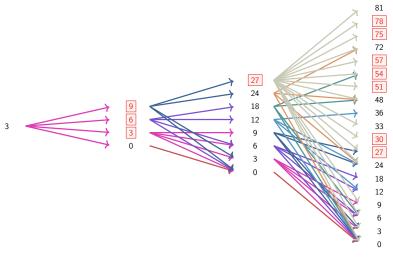
3

Round 1

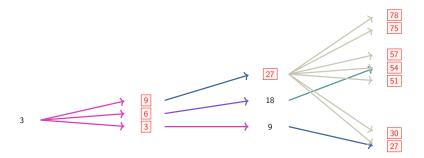
Round 1 Round 2



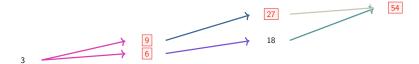
Round 1 Round 2 Round 3



Round 1 Round 2 Round 3 Round 4



Round 1 Round 2 Round 3 Round 4



Round 1 Round 2 Round 3 Round 4

Round 1 Round 2 Round 3 Round 4

Exact degree

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\} :$$

$$\star$$
 if $k_r = 1 \mod 2$,

$$\omega_{\mathbf{r}}=2^{k_{\mathbf{r}}}-5\in\mathcal{E}_{3,\mathbf{r}},$$

$$\star$$
 if $k_r = 0 \mod 2$,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_{3,r}.$$

Exact degree

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

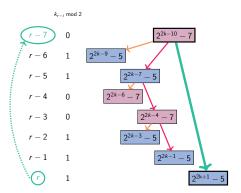
$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}:$$

 \star if $k_r = 1 \mod 2$,

$$\omega_{\mathbf{r}}=2^{k_{\mathbf{r}}}-5\in\mathcal{E}_{3,\mathbf{r}},$$

 \star if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$$



Constructing exponents.

Exact degree

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\} :$$

 \star if $k_r = 1 \mod 2$.

$$\omega_r = 2^{k_r} - 5 \in \mathcal{E}_{3,r},$$

 \star if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$$



Constructing exponents.

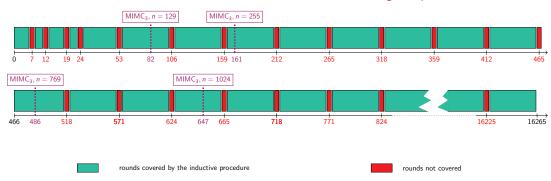
In most cases, $\exists \ell$ s.t. $\omega_{r-\ell} \in \mathcal{E}_{3,r-\ell} \Rightarrow \omega_r \in \mathcal{E}_{3,r}$

Covered rounds

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

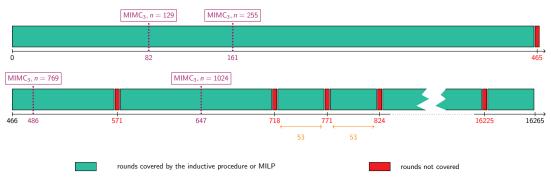


Covered rounds

Idea of the proof:

- ★ inductive proof: existence of "good" ℓ
- ⋆ MILP solver (PySCIPOpt)

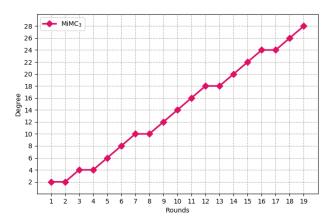
Rounds for which we are able to exhibit a maximum-weight exponent.



Plateau

Proposition

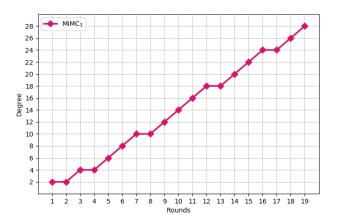
There is a plateau when $k_r = \lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$



Plateau

Proposition

There is a plateau when $k_r = |r \log_2 3| = 1 \mod 2$ and $k_{r+1} = |(r+1) \log_2 3| = 0 \mod 2$



If we have a plateau

$$B_3^r = B_3^{r+1} ,$$

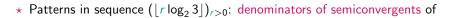
Then the next one is

$$B_3^{r+4} = B_3^{r+5}$$

or

$$B_3^{r+5} = B_3^{r+6}$$
.

Music in MIMC₃



$$\log_2(3) \simeq 1.5849625$$

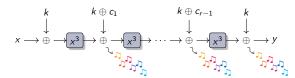
$$\mathfrak{D} = \{ \textcolor{red}{\boxed{1}}, \textcolor{red}{\boxed{2}}, 3, 5, \textcolor{red}{\boxed{7}}, \textcolor{red}{\boxed{12}}, 17, 29, 41, \textcolor{red}{\boxed{53}}, 94, 147, 200, 253, 306, \textcolor{red}{\boxed{359}}, \ldots \} \; ,$$

$$\log_2(3) \simeq \frac{a}{h} \Leftrightarrow 2^a \simeq 3^b$$

- * Music theory:
 - \star perfect octave 2:1
 - ⋆ perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12}$$

 \Leftrightarrow 7 octaves \sim 12 fifths



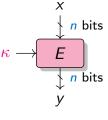
Higher-Order differential attacks

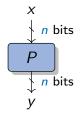
Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

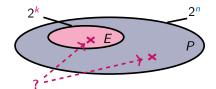
$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1



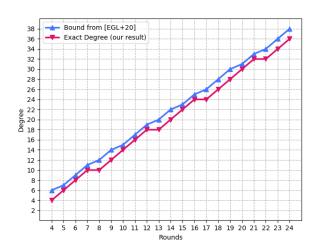


(b) Random permutation



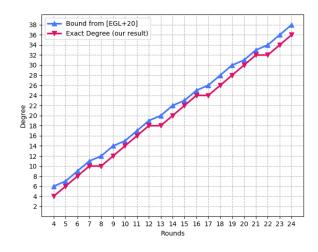
Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.



Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.



For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	$2^{128} {\rm XOR}$	2 ¹²⁸	[EGL+20]
<mark>81</mark> /82	$2^{128}{\rm XOR}$	2^{128}	New
80/82	$2^{125} \mathrm{XOR}$	2^{125}	New

Secret-key distinguishers (n = 129)

A better understanding of the algebraic degree of MiMC

- ⋆ guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

- ★ bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

A better understanding of the algebraic degree of MiMC

- ⋆ guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil.$$

- ★ bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

Missing exponents in the univariate representation

A better understanding of the algebraic degree of MiMC

- ⋆ guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

- ⋆ bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

Missing exponents in the univariate representation

Bounds on the algebraic degree

A better understanding of the algebraic degree of MiMC

- ⋆ guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

- ⋆ bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

Missing exponents in the univariate representation

Bounds on the algebraic degree

Highe

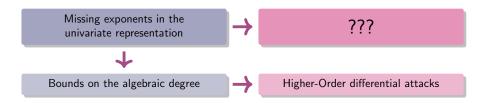
Higher-Order differential attacks

A better understanding of the algebraic degree of MiMC

- * guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

- * bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack



Conclusions

- ★ New tools for designing primitives:
 - ★ Anemoi: a new family of ZK-friendly hash functions
 - * a link between CCZ-equivalence and AO
 - ⋆ more general contributions: Jive, Flystel

Conclusions

- ★ New tools for designing primitives:
 - ★ Anemoi: a new family of ZK-friendly hash functions
 - * a link between CCZ-equivalence and AO
 - ★ more general contributions: Jive, Flystel
- * Practical and theoretical cryptanalysis
 - * a better insight into the behaviour of algebraic systems
 - * a comprehensive understanding of the univariate representation of MiMC
 - * guarantees on the algebraic degree of MiMC

- ⋆ On the design
 - ★ a Flystel with more branches
 - \star solve the conjecture for the linearity

- ⋆ On the design
 - ★ a Flystel with more branches
 - ⋆ solve the conjecture for the linearity
- ⋆ On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

- ⋆ On the design
 - ★ a Flystel with more branches
 - ⋆ solve the conjecture for the linearity
- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

- ⋆ On the design
 - ★ a Flystel with more branches
 - * solve the conjecture for the linearity
- ⋆ On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

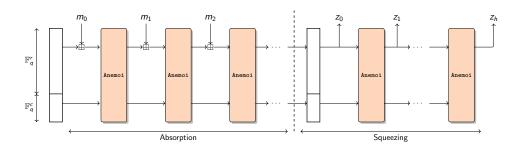
Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Anemoi

More benchmarks and Cryptanalysis

Sponge construction

- ★ Hash function (random oracle):
 - ★ input: arbitrary length★ ouput: fixed length



New Mode: Jive

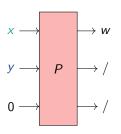
⋆ Compression function (Merkle-tree):

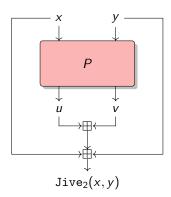
* input: fixed length

⋆ output: (input length) /2

Dedicated mode: 2 words in 1

$$(x, y) \mapsto x + y + u + v$$
.





New Mode: Jive

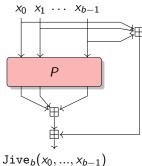
★ Compression function (Merkle-tree):

* input: fixed length

* output: (input length) /b

Dedicated mode: b words in 1

$$\mathtt{Jive}_b(P): egin{cases} (\mathbb{F}_q^m)^b & o \mathbb{F}_q^m \ (x_0,...,x_{b-1}) & \mapsto \sum_{i=0}^{b-1} \left(x_i + P_i(x_0,...,x_{b-1})
ight) \ . \end{cases}$$



Comparison for Plonk (with optimizations)

	m	Constraints
Poseidon	3	110
POSEIDON	2	88
Reinforced Concrete	3	378
keimforced Concrete	2	236
Rescue-Prime	3	252
Griffin	3	125
AnemoiJive	2	86 56

	m	Constraints
Poseidon	3	98
r oseidon	2	82
Reinforced Concrete	3	267
keimforced Concrete	2	174
Rescue-Prime	3	168
Griffin	3	111
AnemoiJive	2	64

(a) With 3 wires.

(b) With 4 wires.

Constraints comparison with an additional custom gate for x^{α} . (s = 128).

with an additional quadratic custom gate: 56 constraints

Native performance

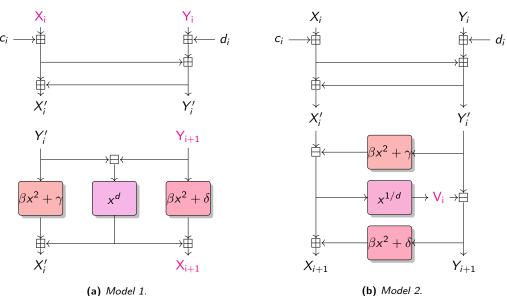
Rescue-12	Rescue-8	Poseidon-12	Poseidon-8	Griffin-12	Griffin-8	Anemoi-8
$15.67~\mu s$	9.13 μ s	$5.87~\mu$ s	2.69 μ s	$2.87~\mu$ s	2.59 μ s	4.21 μs

2-to-1 compression functions for \mathbb{F}_p with $p=2^{64}-2^{32}+1$ (s=128).

Rescue	Poseidon	GRIFFIN	Anemoi		
206 μs	9.2 μ s	74.18 μ s	128.29 μ s		

For BLS12 - 381, Rescue, Poseidon, Anemoi with state size of 2, Griffin of 3 (s = 128).

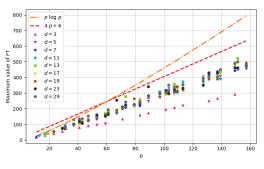
Algebraic attacks: 2 modelings

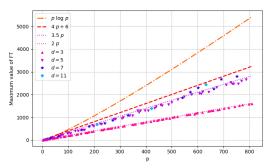


Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$





(a) For different d.

(b) For the smallest d.

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_p

★ Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p}\right) \right| \leq p \log p ?$$

(a) when p = 11 and d = 3.

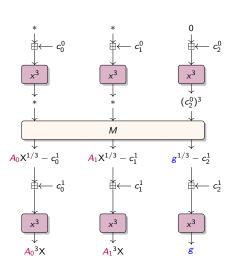
(b) when p = 13 and d = 5.

(c) when p = 17 and d = 3.

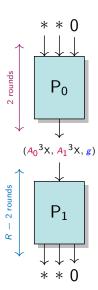
LAT of $Flystel_p$.

Algebraic attacks

Trick for Poseidon

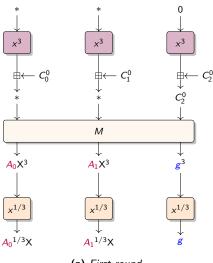


(a) First two rounds.

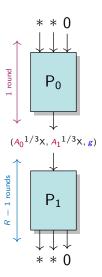


(b) Overview.

Trick for Rescue-Prime



(a) First round.



(b) Overview.

Attack complexity

RP	Authors claims	Ethereum claims	deg ^u	Our complexity		
3	2 ¹⁷	2 ⁴⁵	$3^9\approx 2^{14.3}$	2^{26}		
8	2^{25}	2^{53}	$3^{14}\approx 2^{22.2}$	2^{35}		
13	2^{33}	2^{61}	$3^{19}\approx2^{30.1}$	2 ⁴⁴		
19	2^{42}	2^{69}	$3^{25}\approx2^{39.6}$	2^{54}		
24	2 ⁵⁰	2 ⁷⁷	$3^{30}\approx 2^{47.5}$	2^{62}		

R	m	Authors claims	Authors Ethereum claims claims		Our complexity
4	3	2^{36}	$2^{37.5}$	$3^9\approx 2^{14.3}$	2 ⁴³
6	2	2^{40}	$2^{37.5}$	$3^{11}\approx 2^{17.4}$	2^{53}
7	2	2^{48}	$2^{43.5}$	$3^{13}\approx 2^{20.6}$	2^{62}
5	3	2 ⁴⁸	2 ⁴⁵	$3^{12}\approx2^{19.0}$	2 ⁵⁷
8	2	2^{56}	$2^{49.5}$	$3^{15}\approx 2^{23.8}$	2^{72}

(a) For Poseidon.

(b) For Rescue-Prime.

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty		
Easy	N = 4, m = 3	25	\$2,000		
Easy	N = 6, m = 2	25	\$4,000		
Medium	N = 7, m = 2	29	\$6,000		
Hard	N = 5, m = 3	30	\$12,000		
Hard	N = 8, m = 2	33	\$26,000		

(a) Rescue-Prime

Category	Parameters	Security level	Bounty			
Easy	RP = 3	8	\$2,000			
Easy	RP = 8	16	\$4,000			
Medium	RP = 13	24	\$6,000			
Hard	RP = 19	32	\$12,000			
Hard	RP = 24	40	\$26,000			

(c) Poseidon

Category	Parameters	Security level	Bounty		
Easy	r = 6	9	\$2,000		
Easy	r = 10	15	\$4,000		
Medium	r = 14	22	\$6,000		
Hard	r = 18	28	\$12,000		
Hard	r = 22	34	\$26,000		

(b) Feistel-MiMC

Category	Parameters	Security level	Bounty
Easy	p = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

Open problems

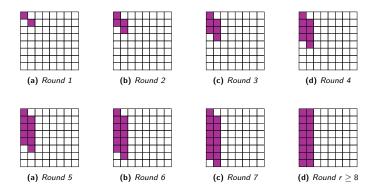
on the Algebraic Degree

Missing exponents when $d = 2^j + 1$ (first rounds)

Corollary

Let $i \in \mathcal{E}_{d,r}$ where $d = 2^j + 1$ and j > 1. Then:

$$\begin{cases} i \bmod 2^{2j} \in \left\{ \{\gamma 2^j, (\gamma+1)2^j+1\}, \ \gamma=0, \dots r-1 \right\} & \text{if } r \leq 2^j \ , \\ i \bmod 2^j \in \{0,1\} & \text{if } r \geq 2^j \ . \end{cases}$$



Bounding the degree when $d = 2^j - 1$

Note that if $d = 2^j - 1$, then

$$2^i \mod d \equiv 2^{i \mod j}$$
.

Proposition

Let $d = 2^j - 1$, such that $j \ge 2$. Then,

$$B_{\mathbf{d}}^r \leq \lfloor r \log_2 \mathbf{d} \rfloor - (\lfloor r \log_2 \mathbf{d} \rfloor \mod j)$$
.

Note that if $2 \le j \le 7$, then

$$2^{\lfloor r \log_2 \frac{d}{\rfloor} + 1} - 2^j - 1 > \frac{d^r}{}.$$

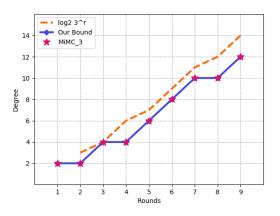
Corollary

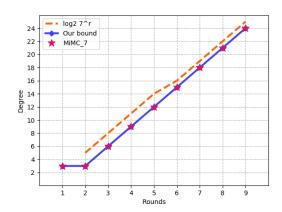
Let $d \in \{3, 7, 15, 31, 63, 127\}$. Then,

$$B_{\mathbf{d}}^{r} \leq \begin{cases} \left \lfloor r \log_{2} \mathbf{d} \right \rfloor - j & \text{if } \left \lfloor r \log_{2} \mathbf{d} \right \rfloor \bmod j = 0 \\ \left \lfloor r \log_{2} \mathbf{d} \right \rfloor - \left(\left \lfloor r \log_{2} \mathbf{d} \right \rfloor \bmod j \right) & \text{else }. \end{cases}$$

Bounding the degree when $d = 2^j - 1$

Particularity: Plateau when $|r \log_2 d| \mod j = j - 1$ and $|(r+1) \log_2 d| \mod j = 0$.





Bound for MIMC₃

Bound for MIMC₇

Bounding the degree when $d = 2^j + 1$

Note that if $d = 2^j + 1$, then

$$2^{i} \bmod d \equiv \begin{cases} 2^{i \bmod 2j} & \text{if } i \equiv 0, \dots, j \bmod 2j \ , \\ d - 2^{(i \bmod 2j) - j} & \text{if } i \equiv 0, \dots, j \bmod 2j \ . \end{cases}$$

Proposition

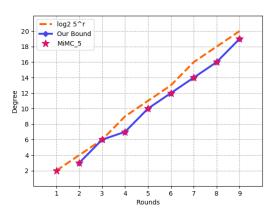
Let $d = 2^j + 1$ s.t. j > 1. Then if r > 1:

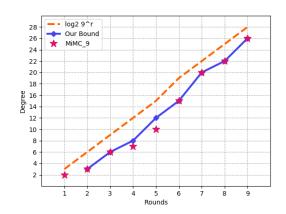
$$B_d^r \leq \begin{cases} \lfloor r \log_2 d \rfloor - j + 1 & \text{if } \lfloor r \log_2 d \rfloor \bmod 2j \in \{0, j - 1, j + 1\} \\ \lfloor r \log_2 d \rfloor - j & \text{else} \end{cases},$$

The bound can be refined on the first rounds!

Bounding the degree when $d = 2^j + 1$

Particularity: There is a gap in the first rounds.





Bound for MIMC₅

Bound for MIMC9

Sporadic Cases

Observation

Let $k_{3,r} = \lfloor r \log_2 3 \rfloor$. If $4 \le r \le 16265$, then

$$3^r > 2^{k_{3,r}} + 2^r$$
.

Observation

Let t be an integer s.t. $1 \le t \le 21$. Then

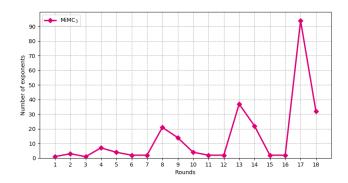
$$\forall x \in \mathbb{Z}/3^t\mathbb{Z}, \ \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \ \text{mod} \ 3^t \ .$$

Is it true for any t?

Should we consider more ε_i for larger t?

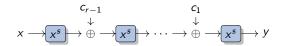
More maximum-weight exponents

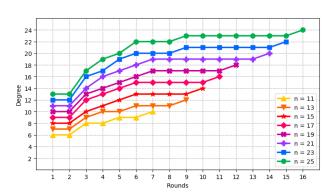
r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
k _{3,r}	1	3	4	6	7	9	11	12	14	15	17	19	20	22	23	25	26	28
<i>b</i> _{3,<i>r</i>}	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	0	0



Study of $MiMC_3^{-1}$

Inverse: $F: x \mapsto x^s$, $s = (2^{n+1} - 1)/3 = [101..01]_2$





First plateau

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$

★ Round 1:

$$B_s^1 = \text{wt}(s) = (n+1)/2$$

★ Round 2:

$$B_s^2 = \max\{\operatorname{wt}(is), \text{ for } i \leq s\} = (n+1)/2$$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$\mathsf{wt}(is) \in \begin{cases} [\mathsf{wt}(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \bmod 3 \\ [\mathsf{wt}(i), (n+1)/2] & \text{if } wt(i) \equiv 0, 1 \bmod 3 \end{cases}$$

Next Rounds

Proposition [Boura and Canteaut, IEEE13]

 $\forall i \in [1, n-1]$, if the algebraic degree of encryption is $\deg^a(F) < (n-1)/i$, then the algebraic degree of decryption is $\deg^a(F^{-1}) < n-i$

$$r_{n-i} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{1}{2} \left\lceil \frac{n-1}{i} \right\rceil \right\rceil + 1 \right) \right\rceil$$

In particular:

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$

