Mathematical tools to design and analyze the security of Arithmetization-Oriented symmetric primitives

Clémence Bouvier 1,2

including joint works with Pierre Briaud, Anne Canteaut, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov and Danny Willems

¹Sorbonne Université,

²Inria Paris,

June 7th, 2023

Content

Mathematical tools to design and analyze the security of Arithmetization-Oriented symmetric primitives.

- Preliminaries
 - Symmetric cryptography
 - Emerging uses
- Algebraic Degree of MiMC
 - Missing exponents
 - Bound on the degree
 - Higher-Order differential attacks
- Anemoi
 - CCZ-equivalence
 - New S-box: Flystel
 - SPN construction

Symmetric cryptography

We assume that a key is already shared.

- ★ Stream cipher
- ⋆ Block cipher

Symmetric cryptography

We assume that a key is already shared.

- ★ Stream cipher
- * Block cipher

- \star input: $x \in \mathbb{F}_{2^n}$
- \star parameter: key $\kappa \in \mathbb{F}_{2^k}$
- \star output: $y \in \mathbb{F}_{2^n}$ s.t. $y = E_{\kappa}(x)$
- \star symmetry: E and E^{-1} use the same κ

Block cipher

$$E_{\kappa}: \mathbb{F}_{2^{n}} \to \mathbb{F}_{2^{n}}$$
$$x \mapsto y = E_{\kappa}(x)$$

Symmetric cryptography

We assume that a key is already shared.

- ★ Stream cipher
- * Block cipher

- \star input: $x \in \mathbb{F}_{2^n}$
- \star parameter: key $\kappa \in \mathbb{F}_{2^k}$
- \star output: $y \in \mathbb{F}_{2^n}$ s.t. $y = E_{\kappa}(x)$
- \star symmetry: E and E^{-1} use the same κ

Block cipher

Random permutation

$$E_{\kappa}: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$
$$x \mapsto y = E_{\kappa}(x)$$

$$egin{aligned} &\mathcal{F}_{2^n}
ightarrow &\mathcal{F}_{2^n} \ & x \mapsto y = E_{\kappa}(x) \end{aligned} \qquad egin{aligned} &P: \mathbb{F}_{2^n}
ightarrow \mathbb{F}_{2^n} \ & x \mapsto y = P(x) \end{aligned}$$

 \Rightarrow Block cipher: family of 2^k permutations of *n* bits.

Iterated constructions

 \Rightarrow How to build a block cipher?

By iterating a round function.

Performance constraints! The primitive must be fast.

A need of new primitives

Protocols requiring new primitives:

- ⋆ Multiparty Computation (MPC)
- ⋆ Homomorphic Encryption (FHE)
- ★ Systems of Zero-Knowledge (ZK) proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

And analyse their security!

	2		5 2		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

_									
ſ	4	2	6	5	7	1	3	9	8
	8	5	7	2	9	3	1	4	6
	1	3	9	4	6	8	2	7	5
	9	7	1	3	8	5	6	2	4
	5	4	3	7	2	6	8	1	9
	6	8	2	1	4	9	7	5	3
ſ	7	9	4	6	3	2	5	8	1
	2	6	5	8	1	4	9	3	7
	3	1	8	9	5	7	4	6	2

Unsolved Sudoku

Solved Sudoku

Unsolved Sudoku

Grid cutting

Unsolved Sudoku

Rows checking

Unsolved Sudoku

Columns checking

Unsolved Sudoku

Squares checking

Performance metric

Need to **verify efficiently** that y == E(x).

What does "efficient" mean for Zero-Knowledge Proofs?

Performance metric

Need to **verify efficiently** that y == E(x).

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

For R1CS: Minimize the number of multiplications

Examples:

* ? R1CS contraints for

$$y = (ax + b)^3(cx + d) + ex$$

* ? R1CS contraints for

$$y = x^7$$

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- ★ Operations: logical gates/CPU instructions

Arithmetization-friendly

- * Field size:
 - \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- Operations:
 large finite-field arithmetic

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4,8$ (AES: n = 8).
- Operations: logical gates/CPU instructions

Arithmetization-friendly

- ⋆ Field size:
 - \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- ⋆ Operations: large finite-field arithmetic

 $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, with p given by the order of some elliptic curves

Examples:

★ Curve BLS12-381

$$\log_2 p = 255$$

p = 5243587517512619047944774050818596583769055250052763 7822603658699938581184513

★ Curve BLS12-377

$$\log_2 p = 253$$

p = 8444461749428370424248824938781546531375899335154063 827935233455917409239041

A new environment

"Usual" case

- ⋆ Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4,8$ (AES: n = 8).
- Operations: logical gates/CPU instructions

Arithmetization-friendly

- * Field size:
 - \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- ⋆ Operations: large finite-field arithmetic

New properties

"Usual" case

$$y \leftarrow E(x)$$

* Optimized for: implementation in software/hardware

Arithmetization-friendly

$$y \leftarrow E(x)$$
 and $y == E(x)$

* Optimized for: integration within advanced protocols

A new environment

- Decades of Cryptanalysis

$$y \leftarrow E(x)$$

- 5 years of Cryptanalysis

ation-friendly

- Preliminaries
 - Symmetric cryptography
 - Emerging uses
- 2 Algebraic Degree of MiMC
 - Missing exponents
 - Bound on the degree
 - Higher-Order differential attacks
- 3 Anemo:
 - CCZ-equivalence
 - New S-box: Flystel
 - SPN construction

The block cipher MiMC

- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., AC16]:
 - * *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - \star *n*-bit key: k ∈ \mathbb{F}_{2^n}
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

The block cipher MiMC

- ★ Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., AC16]:
 - ⋆ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - \star *n*-bit key: k ∈ \mathbb{F}_{2^n}
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$R := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

The block cipher MiMC

- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., AC16]:
 - \star *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - \star *n*-bit key: k ∈ \mathbb{F}_{2^n}
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$R:=\lceil n\log_3 2\rceil.$$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

Algebraic degree - 1st definition

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}.$$

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic Degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \{ \operatorname{hw}(u) : u \in \mathbb{F}_2^n, a_u \neq 0 \} ,$$

Algebraic degree - 1st definition

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic Degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^{a}(f) = \max \left\{ \operatorname{hw}(u) : u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0 \right\} ,$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, then

$$\deg^a(F) = \max\{\deg^a(f_i), \ 1 \le i \le m\} \ .$$

where $F(x) = (f_1(x), \dots f_m(x)).$

Algebraic degree - 1st definition

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

```
F: \mathbb{F}_{2^{11}} \to \mathbb{F}_{2^{11}}, (x_0, \dots, x_{10}) \mapsto \\ (x_0x_{10} + x_0 + x_1x_5 + x_1x_9 + x_2x_7 + x_2x_9 + x_2x_{10} + x_3x_4 + x_3x_5 + x_4x_8 + x_4x_9 + x_5x_{10} + x_6x_7 + x_6x_{10} + x_7x_8 + x_9x_{10}, \\ x_0x_1 + x_0x_6 + x_2x_5 + x_2x_8 + x_3x_6 + x_3x_9 + x_3x_{10} + x_4 + x_5x_8 + x_5x_9 + x_6x_9 + x_7x_9 + x_7x_9 + x_7 + x_{10}, \\ x_0x_1 + x_0x_2 + x_0x_{10} + x_1x_5 + x_1x_6 + x_1x_9 + x_2x_7 + x_3x_4 + x_3x_7 + x_4x_5 + x_4x_8 + x_4x_{10} + x_5x_{10} + x_6x_7 + x_6x_8 + x_6x_9 + x_7x_{10} + x_8 + x_9x_{10}, \\ x_0x_3 + x_0x_6 + x_0x_7 + x_1 + x_2x_5 + x_2x_6 + x_2x_8 + x_2x_{10} + x_3x_6 + x_3x_7 + x_4x_5 + x_4x_6 + x_4 + x_5x_8 + x_5x_{10} + x_6x_9 + x_7x_{10} + x_8x_9 + x_{10}, \\ x_0x_2 + x_0x_4 + x_1x_2 + x_1x_6 + x_1x_7 + x_2x_9 + x_2x_{10} + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_7 + x_4x_9 + x_5 + x_6x_8 + x_7x_8 + x_8x_9 + x_8x_{10}, \\ x_0x_5 + x_0x_4 + x_1x_7 + x_1x_3 + x_2x_6 + x_2x_7 + x_2x_{10} + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_7 + x_4x_9 + x_5 + x_6x_8 + x_7x_8 + x_8x_9 + x_8x_{10}, \\ x_0x_5 + x_0x_4 + x_1x_7 + x_1x_3 + x_2x_6 + x_2x_7 + x_2x_{10} + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_7 + x_4x_9 + x_5 + x_6x_8 + x_7x_8 + x_8x_9 + x_8x_{10}, \\ x_0x_5 + x_0x_4 + x_1x_7 + x_1x_8 + x_1x_7 + x_2x_9 + x_2x_{10} + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_9 + x_5x_6 + x_5x_9 + x_7x_8 + x_7x_9 + x_7x_{10} + x_9, \\ x_0x_5 + x_0x_6 + x_1x_4 + x_1x_7 + x_1x_8 + x_2x_4 + x_2x_7 + x_2x_9 + x_3x_1 + x_4x_9 + x_4x_9 + x_4x_1 + x_5x_6 + x_5x_7 + x_5x_9 + x_7x_{10} + x_9 + x_9x_{10}, \\ x_0x_7 + x_0x_8 + x_0x_9 + x_1x_8 + x_1x_9 + x_2x_9 + x_2x_4 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_8 + x_4x_{10} + x_5x_6 + x_5x_7 + x_5x_9 + x_5x_1 + x_
```

Algebraic degree - 2nd definition

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^{n}-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\text{hw}(i), 0 \le i < 2^{n}, \text{ and } b_{i} \ne 0\}$$

Algebraic degree - 2nd definition

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^m-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\text{hw}(i), 0 \le i < 2^{n}, \text{ and } b_{i} \ne 0\}$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg^a(F) \leq n-1$$

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n-1

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0$$

Random permutation: degree = n-1

Block cipher

Random permutation

Round i of MiMC₃

$$x \mapsto (x + c_{i-1})^3$$

Round i of MiMC₃

$$x \mapsto (x + c_{i-1})^3$$

For *r* rounds:

* Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

* Aim: determine

$$B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \ .$$

Round i of MiMC₃

$$x \mapsto (x + c_{i-1})^3$$

For *r* rounds:

* Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

* Aim: determine

$$B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] .$$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Round i of MiMC₃

$$x \mapsto (x + c_{i-1})^3$$

For *r* rounds:

* Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

* Aim: determine

$$B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] .$$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Algebraic degree observed for n = 31.

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{3,r-1}\}$$

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{3,r-1}\}$$

Missing exponents: no exponent $2^{2k} - 1$

Proposition

$$\forall i \in \mathcal{E}_{3,r}, i \not\equiv 5,7 \mod 8$$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$

And a lower bound if $3^r < 2^n - 1$:

$$B_3^r \ge \max\{wt(3^i), i \le r\}$$

Upper bound reached for \sim 16265 rounds

Plateau

 \Rightarrow plateau when $\lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $\lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$

Algebraic degree observed for n = 31.

If we have a plateau

$$B_3^r = B_3^{r+1} ,$$

$$B_3^{r+4} = B_3^{r+5}$$
 or $B_3^{r+5} = B_3^{r+6}$.

Music in MIMC₃

- ▶ Patterns in sequence $(\lfloor r \log_2 3 \rfloor)_{r>0}$:
 - \Rightarrow denominators of semiconvergents of $\log_2(3) \simeq 1.5849625$

$$\mathfrak{D} = \{ \textcolor{red}{\boxed{1}}, \textcolor{red}{\boxed{2}}, 3, 5, \textcolor{red}{\boxed{7}}, \textcolor{red}{\boxed{12}}, 17, 29, 41, \textcolor{red}{\boxed{53}}, 94, 147, 200, 253, 306, \textcolor{red}{\boxed{359}}, \ldots \} \ ,$$

$$\log_2(3) \simeq \frac{a}{b} \Leftrightarrow 2^a \simeq 3^b$$

- Music theory:
 - ♪ perfect octave 2:1
 - perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad \text{7 octaves} \ \sim 12 \text{ fifths}$$

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0$$

Random permutation: degree = n-1

Block cipher

Random permutation

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	$2^{128} \mathrm{XOR}$	2 ¹²⁸	[EGL+20]
81/82	2 ¹²⁸ XOR	2 ¹²⁸	New
80/82	2 ¹²⁵ XOR	2 ¹²⁵	New

Secret-key distinguishers (n = 129)

Algebraic Degree of MiMC

- ★ guarantee on the degree of MIMC₃
 - * upper bound on the algebraic degree

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

- * bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

Joint work with Anne Canteaut and Léo Perrin Published in Designs, Codes and Cryptography (2023)

More details on eprint.iacr.org/2022/366

Futur work

Some open problems

- ★ Conjecture for maximum-weight exponents
- * Form of coefficients
- ★ Sparse univariate polynomials
- ★ Inverse transformation
- ★ SPN construction
- * . . .

Sporadic Cases

Observation

Let t be an integer s.t. $1 \le t \le 21$. Then

$$\forall x \in \mathbb{Z}/3^t\mathbb{Z}, \ \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \ \text{mod} \ 3^t.$$

Is it true for any t?

Should we consider more ε_i for larger t?

Sparse Univariate Polynomials

Gold Functions: x^3 , x^5 , x^9 , ...

Proposition

Let $\mathcal{E}_{d,r}$ be the set of exponents in the univariate form of $\mathsf{MIMC}_d[r]$, where $d=2^j+1$ and d>3. Then:

$$\forall i \in \mathcal{E}_{d,r}, i \mod 2^j \in \{0,1\}$$
.

- ★ for MIMC₅ : $i \equiv 0, 1 \mod 4$
- ★ for MIMC₉ : $i \equiv 0, 1 \mod 8$
- \star for MIMC₁₇ : $i \equiv 0, 1 \mod 16$

Study of $MiMC_3^{-1}$

Inverse: $F: x \mapsto x^s, s = (2^{n+1} - 1)/3 = [101..01]_2$

First plateau

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$

★ Round 1:

$$B_s^1 = wt(s) = (n+1)/2$$

★ Round 2:

$$B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3 \\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 0, 1 \mod 3 \end{cases}$$

Next Rounds

Next rounds: another plateau at n-2?

Proposition [BC13]

 $\forall i \in [1, n-1]$, if the algebraic degree of encryption is $\deg^a(F) < (n-1)/i$, then the algebraic degree of decryption is $\deg^a(F^{-1}) < n-i$

$$r_{n-i} \geq \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{1}{2} \left\lceil \frac{n-1}{i} \right\rceil \right\rceil + 1 \right) \right\rceil.$$

In particular:

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$

- Preliminaries
 - Symmetric cryptography
 - Emerging uses
- Algebraic Degree of MiMC
 - Missing exponents
 - Bound on the degree
 - Higher-Order differential attacks
- 3 Anemoi
 - CCZ-equivalence
 - New S-box: Flystel
 - SPN construction

Why Anemoi?

* Anemoi

Family of ZK-friendly Hash functions

Why Anemoi?

AnemoiFamily of ZK-friendly Hash functions

* Anemoi
Greek gods of winds

Hash Functions

Definition

Hash function: $H: \mathbb{F}_q^\ell \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

Hash Functions

Definition

Hash function: $H: \mathbb{F}_q^\ell \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

Sponge construction

Parameters:

- * rate r > 0
- \star capacity c > 0
- \star permutation of $\mathbb{F}_q^r imes \mathbb{F}_q^c$

Need: verification using few multiplications.

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

$$y \leftarrow E(x)$$

 \sim *E*: low degree

$$y == E(x)$$

 \sim *E*: low degree

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

$$y \leftarrow E(x)$$

 \sim *E*: low degree

$$y == E(x)$$

 \sim E: low degree

⇒ vulnerability to some attacks?

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

$$y \leftarrow E(x)$$

 \sim *E*: low degree

 \sim *E*: low degree

⇒ vulnerability to some attacks?

New approach:

using CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

$$y \leftarrow E(x)$$

 \sim *E*: low degree

$$y == E(x)$$

 \sim *E*: low degree

⇒ vulnerability to some attacks?

New approach:

using CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

$$y \leftarrow F(x)$$

 \sim F: high degree

$$v == G(u)$$

 \sim G: low degree

Affine-equivalence

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are affine equivalent if

$$F(x) = (B \circ G \circ A)(x)$$
,

where A, B are affine permutations.

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$F(x) = (B \circ G \circ A)(x) + C(x)$$
,

where A, B, C are affine functions with A, B permutations s.t.

$$\Gamma_{\mathcal{F}} = \left\{ \left(x, \mathcal{F}(x) \right) \mid x \in \mathbb{F}_q \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, \mathcal{G}(x) \right) \mid x \in \mathbb{F}_q \right\},$$

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$F(x) = (B \circ G \circ A)(x) + C(x) ,$$

where A, B, C are affine functions with A, B permutations s.t.

$$\Gamma_{\mathcal{F}} = \left\{ \left(x, \mathcal{F}(x) \right) \mid x \in \mathbb{F}_q \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, \mathcal{G}(x) \right) \mid x \in \mathbb{F}_q \right\} ,$$

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$F(x) = (B \circ G \circ A)(x) + C(x)$$
,

where A, B, C are affine functions with A, B permutations s.t.

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent if

$$\Gamma_{\mathcal{F}} = \{ (x, \mathcal{F}(x)) \mid x \in \mathbb{F}_q \} = \mathcal{A}(\Gamma_{\mathcal{G}}) = \{ \mathcal{A}(x, \mathcal{G}(x)) \mid x \in \mathbb{F}_q \} ,$$

where A is an affine permutation, $A(x) = \mathcal{L}(x) + c$.

Differential and Linear properties

Let
$$F: \mathbb{F}_q^m \to \mathbb{F}_q^m$$

* Differential uniformity: maximum value of the DDT (Difference Distribution Table)

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}|$$

* Linearity: maximum value of the LAT (Linear Approximation Table)

$$\mathcal{W}_{\mathcal{F}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_2^m} (-1)^{a \cdot x + b \cdot \mathcal{F}(x)} \right|$$

$$\mathcal{W}_{F} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_{p}^{m}} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, F(x) \rangle)}{p}\right) \right|$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent if

$$\Gamma_{F} = \left\{ (x, F(x)) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

 \star **F** and **G** have the same differential properties: $\delta_{F} = \delta_{G}$.

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \{ (x, F(x)) \mid x \in \mathbb{F}_{q} \} = \mathcal{A}(\Gamma_{G}) = \{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q} \},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star *F* and *G* have the same differential properties: $\delta_F = \delta_G$.
- * F and G have the same linear properties: $W_F = W_G$.

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent if

$$\Gamma_{F} = \left\{ (x, F(x)) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q} \right\},$$

where A is an affine permutation, A(x) = L(x) + c.

- \star **F** and **G** have the same differential properties: $\delta_{F} = \delta_{G}$.
- \star *F* and *G* have the same linear properties: $\mathcal{W}_{F} = \mathcal{W}_{G}$.
- * Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ (x, F(x)) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_F = \delta_G$.
- \star F and G have the same linear properties: $W_F = W_G$.
- * Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is not preserved.

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \{ (x, F(x)) \mid x \in \mathbb{F}_{q} \} = \mathcal{A}(\Gamma_{G}) = \{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q} \} ,$$

where A is an affine permutation, $A(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_{F} = \delta_{G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F} = \mathcal{W}_{G}$.
- * Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is not preserved.

The Flystel

$$|$$
Butterfly + Feistel \Rightarrow Flystel

A 3-round Feistel-network with

$$Q_\gamma: \mathbb{F}_q o \mathbb{F}_q$$
 and $Q_\delta: \mathbb{F}_q o \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q o \mathbb{F}_q$ a permutation

Open Flystel \mathcal{H} .

High-degree permutation

Closed Flystel \mathcal{V} .

Low-degree function

$$\begin{cases} u = x - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(x - Q_{\gamma}(y)) - y) \\ y = E^{-1}(x - Q_{\gamma}(y)) - y \end{cases} \begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

$$\begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

The Flystel

$$\Gamma_{\mathcal{H}} = \left\{ ((x,y), \mathcal{H}((x,y))) \mid (x,y) \in \mathbb{F}_q^2 \right\}$$
$$= \mathcal{A}\left(\left\{ ((v,y), \mathcal{V}((v,y))) \mid (v,y) \in \mathbb{F}_q^2 \right\} \right)$$
$$= \mathcal{A}(\Gamma_{\mathcal{V}})$$

Open Flystel \mathcal{H} .

High-degree permutation

Closed Flystel \mathcal{V} .

Low-degree function

$$\begin{cases} u = x - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(x - Q_{\gamma}(y)) - y) \\ y = E^{-1}(x - Q_{\gamma}(y)) - y \end{cases} \begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

$$\begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

Advantage of CCZ-equivalence

* High Degree Evaluation.

Open Flystel \mathcal{H} .

High-degree permutation

Closed Flystel \mathcal{V} .

Low-degree function

$$\begin{cases} \mathbf{u} = \mathbf{x} - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(\mathbf{x} - Q_{\gamma}(y)) - y) \\ \mathbf{y} = E^{-1}(\mathbf{x} - Q_{\gamma}(y)) - y \end{cases} \qquad \begin{cases} \mathbf{x} = Q_{\gamma}(y) + E(y - \mathbf{v}) \\ \mathbf{u} = Q_{\delta}(\mathbf{v}) + E(y - \mathbf{v}) \end{cases}$$

Advantage of CCZ-equivalence

 \star High Degree Evaluation.

$$\begin{cases} p &= 4002409555221667393417789825735904156556882819939007885332\\ &058136124031650490837864442687629129015664037894272559787 \end{cases}$$

$$\begin{cases} \alpha &= 5\\ \alpha^{-1} &= 3201927644177333914734231860588723325245506255951206308265\\ &646508899225320392670291554150103303212531230315418047829 \end{cases}$$

Open Flystel \mathcal{H} .

High-degree permutation

Closed Flystel \mathcal{V} .

Low-degree function

$$\begin{cases} u = x - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(x - Q_{\gamma}(y)) - y) \\ y = E^{-1}(x - Q_{\gamma}(y)) - y \end{cases} \begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

Advantage of CCZ-equivalence

- * High Degree Evaluation.
- * Low Cost Verification.

$$(u, v) == \mathcal{H}(x, y) \Leftrightarrow (x, u) == \mathcal{V}(y, v)$$

Open Flystel \mathcal{H} .

High-degree permutation

Closed Flystel \mathcal{V} .

Low-degree function

$$\begin{cases} u = x - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(x - Q_{\gamma}(y)) - y) \\ y = E^{-1}(x - Q_{\gamma}(y)) - y \end{cases} \begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

$$\begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

Flystel in \mathbb{F}_{2^n}

$$Q_{\gamma}(x) = \gamma + \beta x^3$$
, $Q_{\delta}(x) = \delta + \beta x^3$, $E(x) = x^3$

$$\mathcal{H}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) \mapsto & \left(x + \beta y^3 + \gamma + \beta \left(y + (x + \beta y^3 + \gamma)^{1/3}\right)^3 + \delta \right., \\ y + (x + \beta y^3 - \gamma)^{1/3} \right). \end{cases} \mathcal{V}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) & \mapsto \left((y + v)^3 + \beta y^3 + \gamma \right., \\ (y + v)^3 + \beta v^3 + \delta\right), \end{cases}$$

Open Flystel₂.

Closed Flystel₂.

Properties of Flystel in \mathbb{F}_{2^n}

Degenerated Butterfly.

First introduced by [Perrin et al. 2016].

Well-studied butterfly.

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

- * Differential properties
 - \star Flystel₂: $\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$
- Linear properties

* Flystel₂:
$$W_{\mathcal{H}} = W_{\mathcal{V}} = 2^{n+1}$$

- * Algebraic degree
 - * Open Flystel₂: $deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $deg_{\mathcal{V}} = 2$

Flystel in \mathbb{F}_p

$$Q_{\gamma}(x) = \gamma + \beta x^2$$
, $Q_{\delta}(x) = \delta + \beta x^2$, $E(x) = x^{\alpha}$

$$\mathcal{H}: \begin{cases} \mathbb{F}_{p} \times \mathbb{F}_{p} & \to \mathbb{F}_{p} \times \mathbb{F}_{p} \\ (x,y) & \mapsto \left(x - \beta y^{2} - \gamma + \beta \left(y - (x - \beta y^{2} - \gamma)^{1/\alpha}\right)^{2} + \delta , \quad \mathcal{V}: \begin{cases} \mathbb{F}_{p} \times \mathbb{F}_{p} & \to \mathbb{F}_{p} \times \mathbb{F}_{p} \\ (y,v) & \mapsto \left((y - v)^{\alpha} + \beta y^{2} + \gamma , (v - y)^{\alpha} + \beta v^{2} + \delta\right) \end{cases}$$

usually $\alpha = 3$ or 5.

Open Flystelp.

Closed Flystel_p.

Properties of Flystel in \mathbb{F}_p

* Differential properties Flystel_p has a differential uniformity equals to $\alpha-1$.

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| = \frac{\alpha - 1}{\alpha}$$

(a) when p = 11 and $\alpha = 3$.

(b) when p = 13 and $\alpha = 5$.

(c) when p = 17 and $\alpha = 3$.

The SPN (Substitution-Permutation Network) Structure

The internal state of Anemoi and its basic operations.

(a) Internal state

(b) The diffusion layer \mathcal{M} .

(c) The PHT \mathcal{P} .

(d) The S-box layer S.

(e) The constant addition A.

SPN - mathematical point of view

Let

$$X=\left(\begin{array}{cccc} x_0 & x_1 & \dots & x_{\ell-1} \end{array}\right)$$
 and $Y=\left(\begin{array}{cccc} y_0 & y_1 & \dots & y_{\ell-1} \end{array}\right)$ with $x_i,y_i\in\mathbb{F}_q$.

Internal state of Anemoi:

$$\begin{pmatrix} X \\ Y \end{pmatrix}$$
.

Addition of constants and the linear layer:

$$\left(\begin{array}{c}X\\Y\end{array}\right)\mapsto \left(\begin{array}{c}X\\Y\end{array}\right) + \left(\begin{array}{c}C\\D\end{array}\right), \qquad \left(\begin{array}{c}X\\Y\end{array}\right)\mapsto \left(\begin{array}{c}X\mathcal{M}_x\\Y\mathcal{M}_y\end{array}\right).$$

The Pseudo Hadamard Transform:

$$\begin{pmatrix} X \\ Y \end{pmatrix} \mapsto \begin{pmatrix} {}^t\mathcal{P}(x_0, y_0) & \dots & {}^t\mathcal{P}(x_{\ell-1}, y_{\ell-1}) \end{pmatrix} \quad \text{where} \quad \mathcal{P} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

And the S-Box layer:

$$\begin{pmatrix} X \\ Y \end{pmatrix} \mapsto \begin{pmatrix} {}^{t}\mathcal{H}(x_0, y_0) & \dots & {}^{t}\mathcal{H}(x_{\ell-1}, y_{\ell-1}) \end{pmatrix}.$$

The SPN Structure

Some Benchmarks

	m	RP	Poseidon	Griffin	Anemoi
R1CS	2	208	198	-	76
	4	224	232	112	96
	6	216	264	-	120
	8	256	296	176	160
Plonk	2	312	380	-	189
	4	560	1336	260	308
	6	756	3024	-	444
	8	1152	5448	574	624
AIR	2	156	300	-	126
	4	168	348	168	168
	6	162	396	-	216
	8	192	480	264	288

	m	RP	Poseidon	Griffin	Anemoi
R1CS	2	240	216	-	95
	4	264	264	110	120
	6	288	315	-	150
	8	384	363	162	200
Plonk	2	320	344	-	210
	4	528	1032	222	336
	6	768	2265	-	480
	8	1280	4003	492	672
AIR	2	200	360	-	210
	4	220	440	220	280
	6	240	540	-	360
	8	320	640	360	480

(a) when $\alpha = 3$

(b) when $\alpha = 5$

Constraint comparison for Rescue-Prime, Poseidon, Griffin and Anemoi (s=128) for standard arithmetization, without optimization.

Take-Away

Anemoi

- ★ A new family of ZK-friendly hash functions
- ★ Contributions of fundamental interest:
 - * New S-box: Flystel
- * Identify a link between AO and CCZ-equivalence

Joint work with Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov and Danny Willems

To appear in CRYPTO 2023

More details on eprint.iacr.org/2022/840

Futur work

Some open problems

- ★ Conjecture for the linearity
- ★ Flystel with more branches
- * ...

Properties of Flystel in \mathbb{F}_p

★ Linear properties

$$\mathcal{W} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a,x\rangle - \langle b,F(x)\rangle)}{p}\right) \right| \leq p\log p ?$$

(a) For different α .

(b) For the smallest α .

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_n

* Linear properties

$$\mathcal{W} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a,x \rangle - \langle b,F(x) \rangle)}{p}\right) \right| \leq p \log p ?$$

(a) when p = 11 and $\alpha = 3$.

o) when
$$p=13$$
 and $lpha=5$

(c) when p = 17 and $\alpha = 3$.

LAT of
$$Flystel_p$$
.

Conclusions

- ★ A better understanding of the algebraic degree of MIMC₃
 - More details on eprint.iacr.org/2022/366
- * Anemoi: a new family of ZK-friendly hash functions
 - More details on eprint.iacr.org/2022/840

Conclusions

- ★ A better understanding of the algebraic degree of MIMC₃
 - More details on eprint.iacr.org/2022/366
- * Anemoi: a new family of ZK-friendly hash functions
 - More details on eprint.iacr.org/2022/840

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thanks for your attention!

