A Guided Tour through the Jungle of Arithmetization-Oriented Primitives PART 1

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

SAC Summer School, Toronto, Canada August 12th, 2025

Motivation

Emerging uses

Decentralized identity

Blockchain

Internet of Things

Electronic Voting

and many more...

New symmetric primitives

How to build symmetric primitives?

- * Efficiency What does it mean?
 - * Allowed operations?
 - ⋆ logical gates
 - * CPU instructions
 - * AES round
 - \star arithmetic operations
 - * ...
- ★ **Security** How do we defined it?
- ★ Context Single or multiple use cases?

- * Cost metric?
 - ⋆ throughput
 - * hardware
 - * RAM consumption
 - * number of multiplications
 - * ...

Outline

PART 1

Motivation

★ General Introduction

* Advanced Protocols

⋆ New AOPs

* Computing constraints

PART 2

⋆ Design of AOPs

* Algebraic Cryptanalysis

* Other attacks

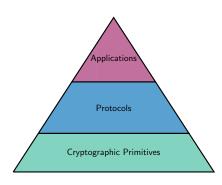
General Introduction

New context

Block Ciphers

Hash functions

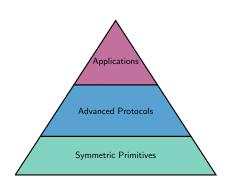
A need for new primitives



A need for new primitives

Protocols requiring new primitives :

- * FHE : Fully Homomorphic Encryption
- ⋆ MPC : Multiparty Computation
- ★ ZK : Systems of Zero-Knowledge proofs Example : SNARKs, STARKs, Bulletproofs



Problem: Designing new symmetric primitives

Secure a computation

Exchange secure messages

* Confidentiality

No external party can read the message.

* Integrity

No external party can modify it.

* Authentication

The message was written by the right person.

Secure a computation

Exchange secure messages

* Confidentiality

No external party can read the message.

* Integrity

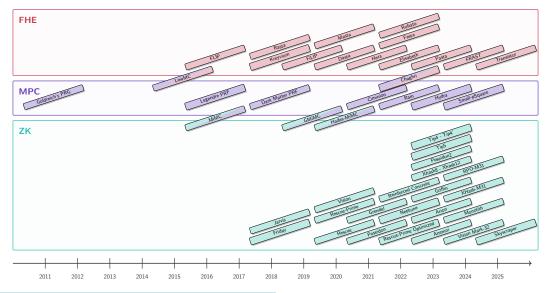
No external party can modify it.

* Authentication

The message was written by the right person.

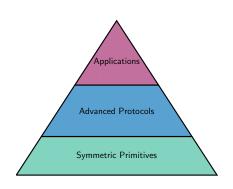
Secure a computation

Primitives



Protocols requiring new primitives:

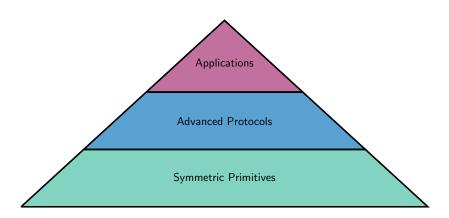
- * FHE: Fully Homomorphic Encryption
- ⋆ MPC : Multiparty Computation
- ★ ZK : Systems of Zero-Knowledge proofs Example : SNARKs, STARKs, Bulletproofs



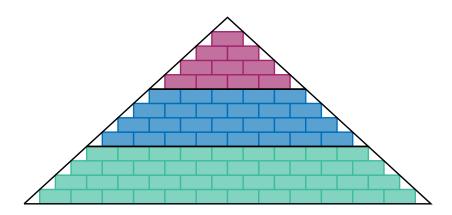
Problem: Designing new symmetric primitives

And analyse their security!

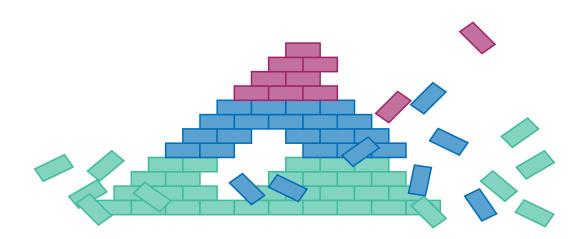
Building blocks of security



Building blocks of security



Cycle primitive



Conception

- ★ Specification of the algorithm
- ★ Justification of design choices
- ★ First security analysis

Publication

Analysis

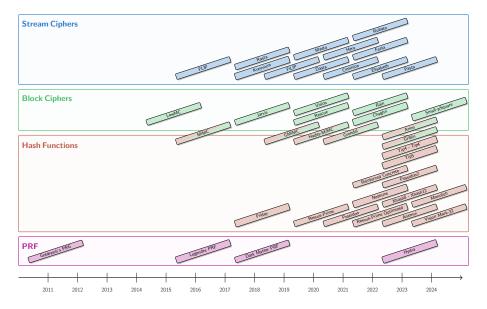
★ Trying to break algorithms

· · · Standardization

Deployment

* Implementation of algorithms

Primitives



Block ciphers

★ input:

n-bit bloc

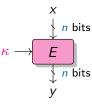
⋆ parameter :

k-bit key

★ output:

n-bit bloc

 \star symmetry : E and E^{-1} use the same κ



(a) Block cipher

(b) Random permutation

n bits

Block ciphers

★ input:

n-bit bloc

* parameter:

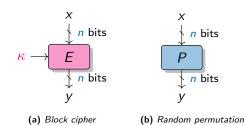
k-bit key

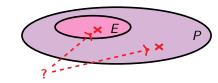
★ output:

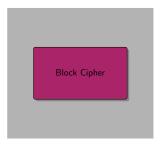
n-bit bloc

 \star symmetry : E and E^{-1} use the same κ

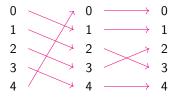
A block cipher is a family of permutations of n-bit blocs.



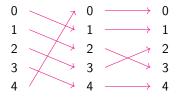




Example $E: x \mapsto (x+k)^3 \text{ with } x \in \{0, 1, 2, 3, 4\} \text{ and } k = 1.$



Example $E: x \mapsto (x+k)^3 \text{ with } x \in \{0, 1, 2, 3, 4\} \text{ and } k = 1.$



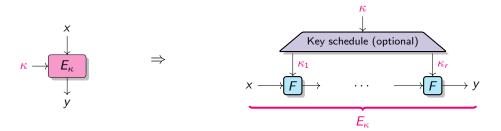
Example $E: x \mapsto (x+k)^3 \text{ with } x \in \{0, 1, 2, 3, 4\} \text{ and } k = 1.$



Iterated constructions

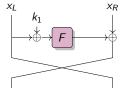
How to build an efficient block cipher?

By iterating a round function.

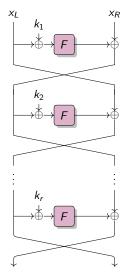


Performance constraints! The primitive must be fast.

Feistel construction

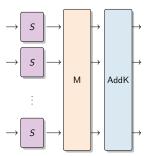


Feistel construction



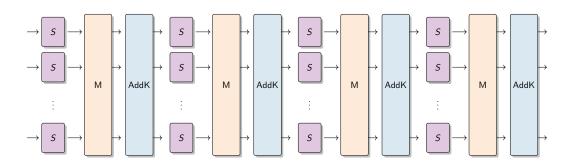
SPN construction

SPN = Substitution Permutation Networks



SPN construction

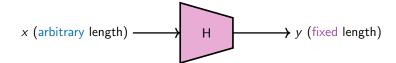
SPN = Substitution Permutation Networks



Hash functions

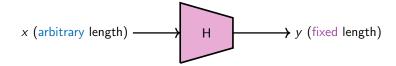
Definition

Hash function: $H: \mathbb{F}_q^{\ell} \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.



Definition

Hash function: $H: \mathbb{F}_q^{\ell} \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.



Example: Hash table of Canadian cities



Collisions and Preimages

Preimage resistance

Given y it must be infeasible to find :

$$x$$
 such that $H(x) = y$

Collision resistance

It must be *infeasible* to find:

$$x \neq x'$$
 such that $H(x) = H(x')$

Collisions and Preimages

Preimage resistance

Given y it must be infeasible to find :

$$x$$
 such that $H(x) = y$

Collision resistance

It must be *infeasible* to find:

$$x \neq x'$$
 such that $H(x) = H(x')$

Birthday paradox

In a group of **23** people, there is a **51%** chance that 2 people will have their birthday on the same day.

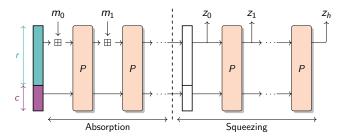
After computing $2^{n/2}$ hashes, there is a very good chance of obtaining a collision.

Sponge construction

Sponge construction

Parameters:

- * rate r > 0
- \star capacity c > 0
- \star permutation of \mathbb{F}_a^n (n = r + c)

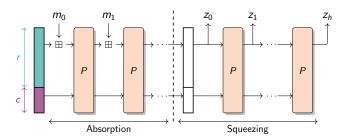


Sponge construction

Sponge construction

Parameters:

- * rate r > 0
- \star capacity c > 0
- \star permutation of \mathbb{F}_a^n (n = r + c)



P is an iterated construction



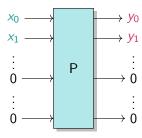
CICO: Constrained Input Constrained Output

Definition

Let $P: \mathbb{F}_q^{r+c} \to \mathbb{F}_q^{r+c}$. The **CICO** problem is :

Finding $X, Y \in \mathbb{F}_q^r$ s.t.

$$P(X,0^c) = (Y,0^c)$$



- ★ Is a hash function a symmetric primitive? True or False?
- * Are AOPs part of a revolution in symmetric crypto?
- * Does Patrick Derbez have some of the best attack on AES?

Symmetric techniques for advanced protocols

- ⋆ Need to secure computation
- * Block Ciphers and indistinguishability
- * Hash Functions and CICO problem

Advanced Protocols

Fully Homomorphic Encryption

Multi-Party Computation

Zero-Knowledge Proofs

Definition

FHE (Fully Homomorphic Encryption) is an encryption scheme with algebraic properties that allow it to perform certain operations on encrypted data without first needing to decrypt it.

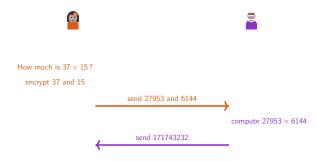
How much is 37×15 ?

Definition

FHE (Fully Homomorphic Encryption) is an encryption scheme with algebraic properties that allow it to perform certain operations on encrypted data without first needing to decrypt it.

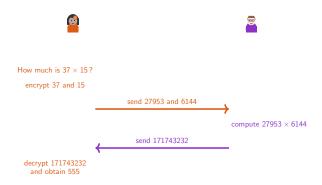
Definition

FHE (Fully Homomorphic Encryption) is an encryption scheme with algebraic properties that allow it to perform certain operations on encrypted data without first needing to decrypt it.



Definition

FHE (Fully Homomorphic Encryption) is an encryption scheme with algebraic properties that allow it to perform certain operations on encrypted data without first needing to decrypt it.



Definition

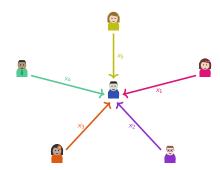
MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.

Definition

MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.

Definition

MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.

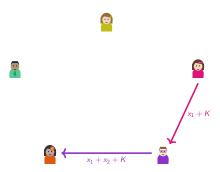


Definition

MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.

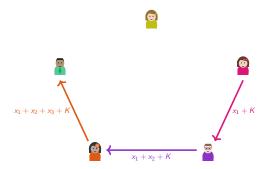
Definition

MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.



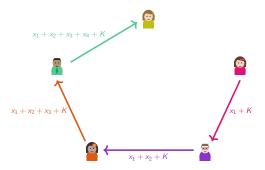
Definition

MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.



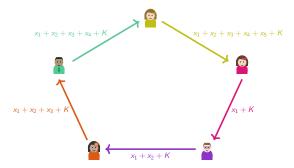
Definition

MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.



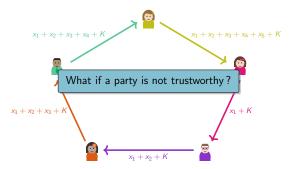
Definition

MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.



Definition

MPC (Multi Party Computation) allows multiple parties to jointly calculate a function on their respective data without revealing it, while ensuring that the result is exact.



Zero-Knowledge Proofs

Definition

ZK (Zero Knowledge) proofs allow a prover to convince a verifier that a proposition is true without revealing it.

Zero-Knowledge Proofs

Definition

ZK (Zero Knowledge) proofs allow a prover to convince a verifier that a proposition is true without revealing it.

How to proceed?

- \star A prover \mathcal{P} pretends that some statement s is true.
- \star A verifier \mathcal{V} asks questions to the prover \mathcal{P} in order to challenge him.
- * If the prover \mathcal{P} gives correct answers to any questions, then the verifier \mathcal{V} gains confidence.

Zero-Knowledge Proofs

Definition

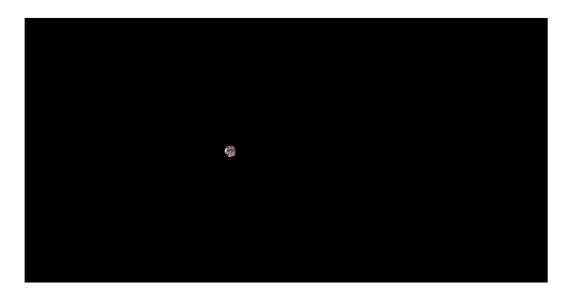
ZK (Zero Knowledge) proofs allow a prover to convince a verifier that a proposition is true without revealing it.

How to proceed?

- \star A prover \mathcal{P} pretends that some statement s is true.
- \star A verifier \mathcal{V} asks questions to the prover \mathcal{P} in order to challenge him.
- \star If the prover ${\cal P}$ gives correct answers to any questions, then the verifier ${\cal V}$ gains confidence.

Definition

- \star Completeness. If s is true, it must exist a way to convince \mathcal{V} .
- * Soundness. If s is false, there is no way \mathcal{P} can convince \mathcal{V} (except with small probability).
- * Zero-knowledge. If s is true, V learns nothing more than this fact.



Statement s:

I know where is Wally!

Properties

* Completeness

There is a way to convince \mathcal{V} .

* Soundness

If s is false, \mathcal{P} can convince \mathcal{V} with probability

0.

* Zero-knowledge

 \mathcal{V} learns nothing more than s.

He doesn't know the exact position of Wally.

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

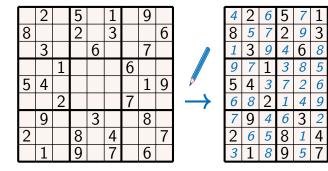
6

9 5

8

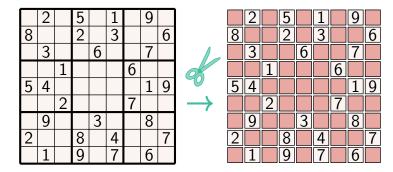
6

Sudoku



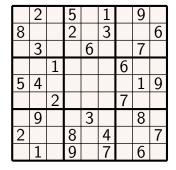
Unsolved Sudoku

Solved Sudoku

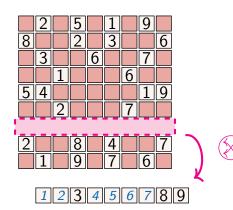


Unsolved Sudoku

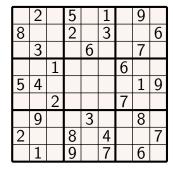
Grid cutting



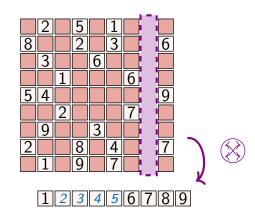
Unsolved Sudoku



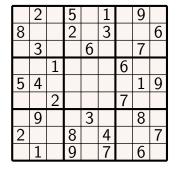
Rows checking



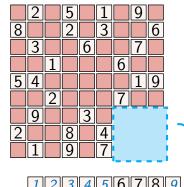
Unsolved Sudoku



Columns checking



Unsolved Sudoku



Squares checking

Statement s:

I know the solution of the grid!

Properties

- * Completeness
 - There is a way to convince \mathcal{V} .
- * Soundness

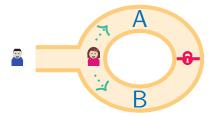
If s is false, \mathcal{P} can convince \mathcal{V} with probability

$$\frac{1}{(9-n)!}$$
 for *n* known squares.

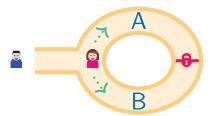
- * Zero-knowledge
 - V learns nothing more than s.

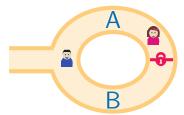
He doesn't know the exact position of each number in the grid.

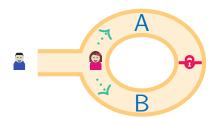
Ali-Baba cave

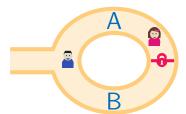


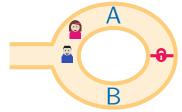
Ali-Baba cave

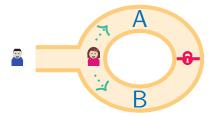


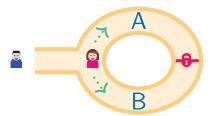


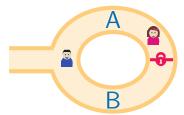


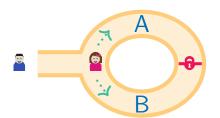


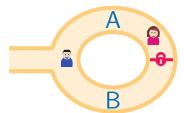


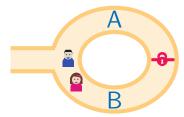












Statement s:

I know the password of the door!

Properties

- * Completeness
 - There is a way to convince \mathcal{V} .
- * Soundness

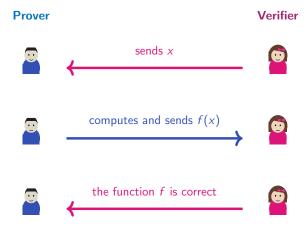
If s is false, \mathcal{P} can convince \mathcal{V} with probability

after *n* runs.

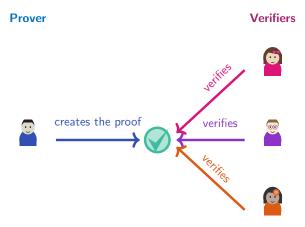
- * Zero-knowledge
 - V learns nothing more than s.

He doesn't know the password.

Interactive Proofs (IZKP)



Non-interactive Proofs (NIZKP)



QUIZ!!

- ⋆ Does MPC work if some parties are not trustworthy?
- ★ What does the acronym ZKP stand for?
- ★ Is the Sudoku an example of an IZKP? A NIZKP? Both?
- * Ali Baba's cave is an example of a NIZKP. True or False?

Take-away

What do we mean by Advanced Protocols?

- * FHE : performing operations on cipher text directly
- ⋆ MPC : jointly evaluating a function
- * ZKP : proving what we can not reveal

New AOPs

Differences with traditional primitives

New challenges

« Appellation d'origine protégée »

AOPs 00000000

Camembert de Normandie

« Arithmetization-Oriented Primitives »

Camembert de Normandie

AOPs 00000000

A new environment

Traditional case

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4,8$

Example

Field of AES

$$\mathbb{F}_2^n$$
, where $n = 8$

(1, 1, 1, 1, 1, 1, 1, 1)

A new environment

Traditional case

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4,8$

Example

Field of AES

$$\mathbb{F}_2^n$$
, where $n = 8$

$$(0,0,0,0,0,0,0,0),$$

 $(0,0,0,0,0,0,0,1),$
...
 $(1,1,1,1,1,1,1,1)$

Arithmetization-Oriented

Operations based on large finite-field arithmetic.

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 32$

Example

Scalar Field of Curve BLS12-381

 \mathbb{F}_p , where

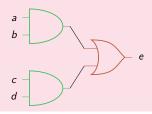
 $p = 0 \times 73 = 0 \times 73$

$$0, 1, 2, ..., p - 1$$

AOPs 000000000

Traditional case

Use of logical gates and CPU instructions.



Example

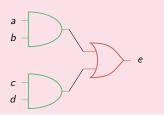
$$(0,1,0)\&(1,1,0)=(0,1,0)$$

$$\begin{array}{cccc} (0,1,0) & - \\ (1,1,0) & - \\ \end{array} - \begin{array}{cccccc} (0,1,0) \end{array}$$

New operations

Traditional case

Use of logical gates and CPU instructions.



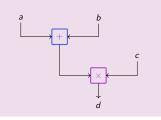
Example

$$(0,1,0)\&(1,1,0)=(0,1,0)$$

$$(0,1,0)$$
 $(0,1,0)$

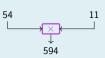
Arithmetization-Oriented

Use of Arithmetic circuit.



Example

$$54 \times 11 = 594$$



Traditional case

Minimize time and memory.

$$y \leftarrow E(x)$$

Traditional case

Minimize time and memory.

$$y \leftarrow E(x)$$

Arithmetization-Oriented

Minimize the number of multiplications.

$$y \leftarrow E(x)$$
 and $y == E(x)$

Traditional case

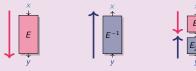
Minimize time and memory.

$$y \leftarrow E(x)$$

Arithmetization-Oriented

Minimize the number of multiplications.

$$y \leftarrow E(x)$$
 and $y == E(x)$



Example

Let $E : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^3$. We have $E^{-1} : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^7$.

Evaluation : Given x = 5, compute y = E(x).

y = 4 (applying E)

Traditional case

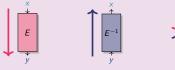
Minimize time and memory.

$$y \leftarrow E(x)$$

Arithmetization-Oriented

Minimize the number of multiplications.

$$y \leftarrow E(x)$$
 and $y == E(x)$



Example

Let $E : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^3$. We have $E^{-1} : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^7$.

Verification : Given x = 5 and y = 4, check if y = E(x).

$$5^3 = 4$$
 (applying E) or $4^7 = 5$ (applying E^{-1})

Take-away

Traditional case

* Alphabet:

$$\mathbb{F}_2^n$$
, with $n \simeq 4,8$

- ★ Operations : Logical gates/CPU instructions
- * Metric : minimize time and memory for the evaluation
- ⋆ Decades of Cryptanalysis

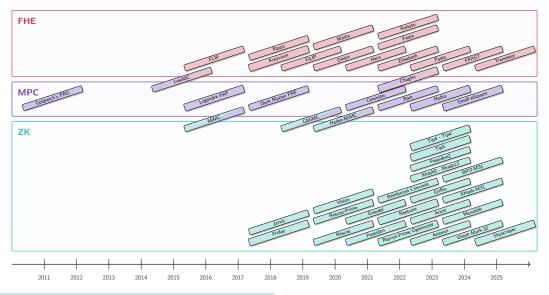
Arithmetization-Oriented

* Alphabet:

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 32$

- * Operations: Large finite-field arithmetic
- * Metric: minimize the number of multiplications for the verification
- \star < 8 years of Cryptanalysis

Primitives



QUIZ!!

- ★ In French, what is the meaning of AOP?
- * For this talk, what is the meaning of AOPs?
- * AOPs are symmetric or asymmetric primitives?
- ★ Can AES be used for advanced protocols?

Take-away

Challenges for AOPs

- * New context, new operations, new environment
- * Adapting traditional techniques...
- * ... or creating new ones?

Computing constraints

R1CS: an easy example

Other proof systems: Plonk, AIR, ...

What does "efficient" mean for Zero-Knowledge Proofs?

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$a = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$r = e \cdot x$$

$$t_8 = t_6 + t_7$$

3 constraints

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = x^7$$

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = x^7$$

$$t_0 = x \times x$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3 = t_2 \times x$$

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System) : minimizing the number of multiplications

$$y = x^7$$

$$t_0 = x \times x$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3 = t_2 \times x$$

4 constraints

Expand or factorise?

Factorised expression

$$z = (x + y)^3 + 1$$

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3=t_2+1$$

Factorised expression

$$z = (x+y)^3 + 1$$

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_2 = t_2 + 1$$

2 constraints

Expand or factorise?

Factorised expression

$$z = (x + y)^3 + 1$$

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_2 = t_2 + 1$$

2 constraints

Expanded expression

$$z = x^3 + 3x^2y + 3xy^2 + y^3$$

$$t_0 = x \times x$$

$$t_3 = 3 \cdot t_2$$

$$t_6 = t_4 \times x$$

$$t_9 = t_5 + t_7$$

$$t_1 = t_0 \times x$$

$$t_4 = y \times y$$

$$t_7 = 3 \cdot t_6$$

$$t_{10} = t_8 + t_9$$

$$t_2 = t_0 \times y$$

$$t_5 = t_4 \times y$$

$$t_8 = t_1 + t_3$$

$$t_{11} = t_{10} + 1$$

Expand or factorise?

Factorised expression

$$z = (x + y)^3 + 1$$

$$t_0 = x + v$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$= t_2 + 1$$

2 constraints

Expanded expression

$$z = x^3 + 3x^2y + 3xy^2 + y^3$$

$$t_0 = x \times x$$

$$t_3 = 3 \cdot t_2$$

$$t_6 = t_4 \times x$$

$$t_1 = t_0 \times x$$

$$t_4 = y \times y$$

$$t_7 = 3 \cdot t_6$$

$$_0=t_8+t_9$$

$$t_2 = t_0 \times y$$

$$t_5 = t_4 \times y$$

$$t_8 = t_1 + t_2$$

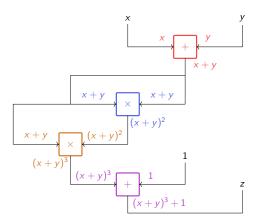
$$t_{11} = t_{10} + 1$$

6 constraints

A circuit representation

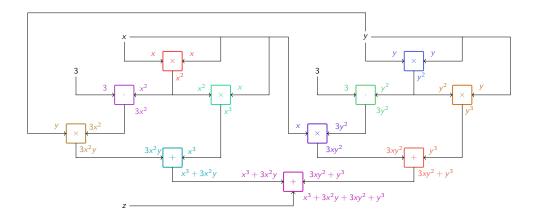
Factorised expression

$$z = (x+y)^3 + 1$$



Expanded expression

$$z = x^3 + 3x^2y + 3xy^2 + y^3$$



Factorised expression

$$\begin{cases} w = (2x + y)^3 + x^3 \\ z = (x + 2y)^3 + y^3 \end{cases}$$

$$t_0 = 2 \cdot x$$

$$t_3 = t_2 \times t_1$$
$$t_4 = 2 \cdot y$$

$$t_6 = t_5 \times t_5 \qquad \qquad t_9 = t_8 \times x$$

$$t_6 = t_5 \times t_5$$
 $t_9 = t_8 \times x$
 $t_7 = t_6 \times t_5$ $t_{10} = y \times y$

$$t_{12} = t_3 + t_9$$

$$t_1 = t_0 + y$$
$$t_2 = t_1 \times t_1$$

$$t_5 = t_4 + x$$

$$t_8 = x \times x$$

$$t_{11}=t_{10}\times y$$

$$t_{13} = t_7 + t_{11}$$

Factorised expression

$$\begin{cases} w = (2x + y)^3 + x^3 \\ z = (x + 2y)^3 + y^3 \end{cases}$$

$$t_0 = 2 \cdot x$$

$$t_3 = t_2 \times t_1$$

$$t_6 = t_5 \times t_5 \qquad \qquad t_9 = t_8 \times x$$

$$t_9 = t_8 \times x$$
$$t_{10} = y \times y$$

$$t_{12} = t_3 + t_1$$

$$t_2 = t_1 \times t_1$$

$$= t_A + x$$

$$t_8 = x \times x$$

 $t_7 = t_6 \times t_5$

$$t_{11}=t_{10}\times y$$

$$\iota_{13}=\iota_7+\iota_1$$

8 constraints

Factorised expression

$$\begin{cases} w = (2x + y)^3 + x^3 \\ z = (x + 2y)^3 + y^3 \end{cases}$$

$$t_0 = 2 \cdot 3$$

$$t_3 = t_2 \times t_1$$

$$t_6 = t_5 \times t_5$$
$$t_7 = t_6 \times t_5$$

$$t_9 = t_8 \times x$$

$$t_{10} = y \times y$$
$$t_{11} = t_{10} \times y$$

$$t_3 = t_7 + t_{11}$$

$$t_2 = t_1 \times t_1$$

$$t_5 = t_4 + x$$

$$t_8 = x \times x$$

8 constraints

Expanded expression

$$\begin{cases} w = 9x^3 + 12x^2y + 6xy^2 + y^3 \\ z = x^3 + 6x^2y + 12xy^2 + 9y^3 \end{cases}$$

$$t_0 = x \times x$$

$$t_0 = x \times x$$
 $t_3 = t_2 \times y$ $t_6 = 9 \cdot t_1$ $t_9 = 6 \cdot t_4$ $t_{12} = t_6 + t_7$

$$t_6 = 9 \cdot t_1$$

$$t_9=6$$

$$t_{10} = t_6 + t_7$$

$$t_{15} = t_1 + t_9$$

$$t_1 = t_0 \times x$$

$$t_4 = t_0 \times y$$
 $t_7 = 12 \cdot t_4$ $t_{10} = 12 \cdot t_5$

$$t_7 = 12 \cdot t_4$$

$$t_{10}=12 \cdot t_5$$

$$t_{13} = t_{12} + t_8$$

$$t_{16}=t_{15}+t_{10}$$

$$t_2 = y \times y$$

$$t_5 = t_2 \times x$$

$$t_8 = 6 \cdot t_5$$

$$t_{11} = 9 \cdot t_3$$

$$t_{14} = t_{13} + t_3$$

$$t_{17} = t_{16} + t_{11}$$

Factorised expression

$$\begin{cases} w = (2x + y)^3 + x^3 \\ z = (x + 2y)^3 + y^3 \end{cases}$$

$$t_0 = 2 \cdot x$$

$$t_3 = t_2 \times t_1$$

$$t_6 = t_5 \times t_5$$
$$t_7 = t_6 \times t_5$$

$$t_9 = t_8 \times x$$
$$t_{10} = v \times v$$

$$t_{12} = t_3 + t_9$$

$$t_2 = t_1 \times t_1$$

$$t_5 = t_4 + x$$

$$t_8 = x \times x$$

$$t_{11}=t_{10}\times y$$

8 constraints

Expanded expression

$$\begin{cases} w = 9x^3 + 12x^2y + 6xy^2 + y^3 \\ z = x^3 + 6x^2y + 12xy^2 + 9y^3 \end{cases}$$

$$t_0 = x \times x$$
 $t_3 = t_2 \times y$

$$t_3 = t_2 \times y$$

$$t_6 = 9 \cdot t_1$$

$$t_9 = 6 \cdot t_4$$

$$t_{12} = t_6 + t_7$$

$$t_{15} = t_1 + t_9$$

$$t_1 = t_0 \times x$$

$$t_4 = t_0 \times y$$

$$t_7 = 12 \cdot t_1$$

$$t_{10} = 12 \cdot t$$

$$t_{13} = t_{12} + t_8$$

$$t_{15} = t_{15} + t_{10}$$

$$t_2 = y \times y$$

$$t_5 = t_2 \times x$$

$$t_{14} = t_{13} + t_3$$

$$t_{7} = t_{16} + t_{11}$$

Additions also have a cost!

$$z = (x+y)^3 + 1$$

R1CS

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3=t_2+1$$

Additions also have a cost!

$$z = (x+y)^3 + 1$$

R1CS

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3=t_2+1$$

2 constraints

Additions also have a cost!

$$z = (x + y)^3 + 1$$

R1CS

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3=t_2+1$$

2 constraints

Plonk

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3 = t_2 + 1$$

Additions also have a cost!

$$z = (x + y)^3 + 1$$

R1CS

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3=t_2+1$$

2 constraints

Plonk

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_2 = t_2 + 1$$

3 constraints

Additions also have a cost!

$$z = (x+y)^3 + 1$$

R1CS

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_3=t_2+1$$

2 constraints

Plonk

$$t_0 = x + y$$

$$t_1 = t_0 \times t_0$$

$$t_2 = t_1 \times t_0$$

$$t_2 = t_2 + 1$$

3 constraints

But it's more complicated than that.... (customs gates)

Example: Computing the terms of Fibonacci sequence

Computing the n-th term for a given n

```
a=1
b=0
For i from 0 to n-1
a=a+b
b=a
```

Return a

Example: Computing the terms of Fibonacci sequence

Computing the n-th term for a given n

$$a=1$$

 $b=0$
For i from 0 to $n-1$
 $a=a+b$
 $b=a$

Return a

i	a _i	b i
0	1	0
1	1	1
2	2	1
3	3	2
:	:	:
n-1	a_{n-1}	b_{n-1}

Execution Trace

Example: Computing the terms of Fibonacci sequence

Computing the n-th term for a given n

$$a=1$$
 $b=0$
For i from 0 to $n-1$
 $a=a+b$
 $b=a$

Return a

i	ai	b _i
0	1	0
1	1	1
2	2	1
3	3	2
:	:	:
n-1	a_{n-1}	b_{n-1}

Execution Trace

Intermediate verification of lines 3 and 4 (i = 2 and i = 3)

$$a_3 = 3 = 2 + 1 = a_2 + b_2$$
 and $b_3 = 2 = a_2$.

Example: Computing the terms of Fibonacci sequence

Computing the *n*-th term for a given n

$$a=1$$
 $b=0$
For i from 0 to $n-1$
 $a=a+b$
 $b=a$

R	۵	+	111	r	n	

i	a _i	b _i
0	1	0
1	1	1
2	2	1
3	3	2
:	:	:
n-1	a_{n-1}	b_{n-1}

Execution Trace

System of constraints

$$\begin{cases} a_0 = 1 & \text{at 1st line,} \\ b_0 = 0 & \text{at 1st line,} \\ a_{i+1} = a_i + b_i & \text{for } 0 \leq i \leq n-2 \ , \\ b_{i+1} = a_i & \text{for } 0 \leq i \leq n-2 \ , \\ a_{n-1} = Fib(n-1) & \text{at line } n-1 \ . \end{cases}$$

Intermediate verification of lines 3 and 4 (i = 2 and i = 3)

$$a_3 = 3 = 2 + 1 = a_2 + b_2$$
 and $b_3 = 2 = a_2$.

- * Scalar multiplication is a type of R1CS constraint. True or False?
- * Additions matter when computing Plonk constraints. True or False?
- Custom gates reduce AIR constraints. True or False?
- * How many R1CS constraints are needed to verify $y = 3 \cdot x + 1$?
- * How many R1CS constraints are needed to verify $y = 3 \cdot x^2 + x$?
- * How to obtain the fewest R1CS constraints to verify $y = (x+1)^2$?

Take-away

How can we minimise the number of constraints?

- ⋆ It depends on the proof system
- * Reduce the number of multiplicative gates (often)
- ★ Factorise or expand expressions?
- ★ Custom gates

Conclusions

Short summary

- * Advanced protocols (FHE, MPC, ZK) are emerging
- * AOPs : symmetric primitives for this new context

Conclusions

Short summary

- * Advanced protocols (FHE, MPC, ZK) are emerging
- * AOPs : symmetric primitives for this new context

Next lecture

- * Design aspects of AOPs, how to classify them?
- * Cryptanalysis aspects, are AOPs secure?

Conclusions

Short summary

- * Advanced protocols (FHE, MPC, ZK) are emerging
- * AOPs: symmetric primitives for this new context

Next lecture

- * Design aspects of AOPs, how to classify them?
- * Cryptanalysis aspects, are AOPs secure?

Break time!

Computing constraints 000000000000