

Symmetric cryptography and cryptanalysis tools

AOP 000000000000 Algebraic Attacks

Conclusions 000

Attacks on AOP (Arithmetization-Oriented Primitives) When cryptanalysis becomes lucrative!

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

École d'hiver, Autrans, France January 22nd, 2025

Attacks on AOP: When cryptanalysis becomes lucrative!

AOP: "Appellation d'origine protégée"

Bleu du Vercors-Sassenage

Context
00000

Conclusions 000

Sudoku

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Attacks on AOP: When cryptanalysis becomes lucrative!

Conclusions 000

Sudoku

Unsolved Sudoku

Solved Sudoku

Conclusions 000

Sudoku

Unsolved Sudoku

Grid cutting

Context
00000

Conclusions 000

Sudoku

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Rows checking

Context
00000

Conclusions 000

Sudoku

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Columns checking

Context
00000

Conclusions 000

Sudoku

	2		5		1		9	
8			2		З			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Squares checking

Context	Symmetric cryptography	and	cryptanalysi
00000	000000000		

Algebraic Attacks

Conclusions 000

Ali-Baba cave

Context	
000000	

Algebraic Attacks

Conclusions

Ali-Baba cave

Context	Symmetric cryptography	and
00000	0000000000	

Algebraic Attacks

Conclusions 000

Ali-Baba cave

Context	Symmetric cryptography and cryptanalysis tools
000000	000000000

Conclusions 000

A need for new primitives

Conclusions 000

A need for new primitives

Protocols requiring new primitives:

- * FHE: Fully Homomorphic Encryption
- * MPC: Multiparty Computation
- * ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

Primitives

Clémence Bouvier

Conclusions 000

A need for new primitives

Protocols requiring new primitives:

- * FHE: Fully Homomorphic Encryption
- * MPC: Multiparty Computation
- * ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

And analyse their security!

Context

AOP 00000000000 Algebraic Attacks

Conclusions 000

Content

 \star Symmetric cryptography and cryptanalysis tools

 \star Introduction of AOP

* Attacks against AOP

Context 000000	Symmetric cryptography and cryptanalysis tools ••••••••••••••••••••••••••••••••••••	AOP 0000000000	Algebraic Attacks 000000000000000000000000000000000000	Conclusions 000
		Block ciphers		

★ input: *n*-bit block

 $x \in \mathbb{F}_2^n$

 \star parameter: *k*-bit key

 $\kappa \in \mathbb{F}_2^k$

★ output: n-bit block

 $y = E_{\kappa}(x) \in \mathbb{F}_2^n$

 \star symmetry: E and E^{-1} use the same κ

(a) Block cipher

(b) Random permutation

ontext Symmetric cryptography and cryptanalysis tools 000000 000000000	AOP	Algebraic Attacks	Conclusions
	0000000000	000000000000000000000000000000000000	000
	Block ciphers		

★ input: *n*-bit block

 $x \in \mathbb{F}_2^n$

 \star parameter: *k*-bit key

 $\kappa \in \mathbb{F}_2^k$

★ output: *n*-bit block

 $y = E_{\kappa}(x) \in \mathbb{F}_2^n$

 \star symmetry: *E* and *E*⁻¹ use the same κ

A block cipher is a family of 2^k permutations of \mathbb{F}_2^n .

(a) Block cipher

(b) Random permutation

Iterated constructions

How to build an efficient block cipher?

By iterating a round function.

Performance constraints! The primitive must be fast.

C	on	te	ext	
	0	0	00)

Conclusions 000

SPN construction

SPN = Substitution Permutation Networks

C	on	te	ext	
	0	0	00)

Conclusions 000

SPN construction

SPN = Substitution Permutation Networks

Context 000000	Symmetric cryptography and cryptanalysis tools	AOP 0000000000	Algebraic Attacks	Conclusions 000

Hash functions

Definition

Hash function: $H : \mathbb{F}_q^{\ell} \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

Context	Symmetric cryptography and cryptanalysis tools	AOP	Algebraic Attacks	Conclusions
000000		0000000000	000000000000000000000000000000000000	000

Hash functions

Definition

Hash function: $H : \mathbb{F}_q^{\ell} \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and *h* is fixed.

* **Preimage resistance**: Given y it must be *infeasible* to find x s.t. H(x) = y.

* Collision resistance: It must be *infeasible* to find $x \neq x'$ s.t. H(x) = H(x').

Conclusions

Sponge construction

Sponge construction

Parameters:

- \star rate r > 0
- \star capacity c > 0
- * permutation of \mathbb{F}_q^n (n = r + c)

Sponge construction

Sponge construction

Parameters:

- \star rate r > 0
- \star capacity c > 0
- * permutation of \mathbb{F}_q^n (n = r + c)

P is an iterated construction

Primitives

Clémence Bouvier

Algebraic Attacks

Conclusions 000

Building blocks of security

Conclusions 000

Building blocks of security

Conclusions 000

Cycle primitive

Primitive life cycle

CICO problem

CICO: Constrained Input Constrained Output

DefinitionLet $P : \mathbb{F}_q^{r+c} \to \mathbb{F}_q^{r+c}$. The CICO problem is:Finding $X, Y \in \mathbb{F}_q^r$ s.t. $P(X, 0^c) = (Y, 0^c)$

AOP •0000000000 Algebraic Attacks

Conclusions 000

Introduction of AOP

A new environment

Traditional case

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4,8$

Example

Field of AES

 \mathbb{F}_2^n , where n = 8

 $\begin{array}{c} (0,0,0,0,0,0,0,0,0),\\ (0,0,0,0,0,0,0,1),\\ & \dots\\ (1,1,1,1,1,1,1,1) \end{array}$

A new environment

Traditional case

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4,8$

Example

Field of AES

 $\mathbb{F}_{2}^{n}, \text{ where } n = 8$ (0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 1), \dots (1, 1, 1, 1, 1, 1, 1, 1)

Arithmetization-Oriented

Operations based on large finite-field arithmetic.

 \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 32$

Example

Scalar Field of Curve BLS12-381

 \mathbb{F}_{p} , where

 $\label{eq:p} p = 0 \texttt{x73eda753299d7d483339d80809a1d805} \\ 53 \texttt{bda402fffe5bfefffffff00000001} \end{cases}$

0, 1, 2, ..., *p* − 1

C	on	te	ext		
			0	0	

Conclusions 000

New operations

Traditional case

Use of logical gates and CPU instructions.

Conclusions 000

New operations

Traditional case

Use of logical gates and CPU instructions.

Arithmetization-Oriented

Use of Arithmetic circuit.

Context	
00000	

Conclusions 000

A new metric

Traditional case

Minimize time and memory.

A new metric

Traditional case

Minimize time and memory.

 $y \leftarrow E(x)$

Ε

Minimize the number of multiplications.

 $y \leftarrow E(x)$ and y == E(x)

Context 000000	Symmetric cryptography and cryptanalysis tools	AOP 0000000000	Algebraic Attacks 000000000000000000000000000000000000	Conc

A new metric

Traditional case

Minimize time and memory.

 $y \leftarrow E(x)$

Ε

Arithmetization-Oriented

Minimize the number of multiplications.

$$y \leftarrow E(x)$$
 and $y == E(x)$

Example

Let $\boldsymbol{E} : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^3$. We have $\boldsymbol{E}^{-1} : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^7$. **Evaluation:** Given x = 5, compute $y = \boldsymbol{E}(x)$.

$$y = 4$$
 (applying E)

Context	Symmetric cryptography and cryptanalysis tools	AOP	Algebraic Attacks	Conclu
000000		0000000000	000000000000000000000000000000000000	000

A new metric

Traditional case

Minimize time and memory.

 $y \leftarrow E(x)$

Ε

Arithmetization-Oriented

Minimize the number of multiplications.

$$y \leftarrow E(x)$$
 and $y == E(x)$

Example

Let $E : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^3$. We have $E^{-1} : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^7$. Verification: Given x = 5 and y = 4, check if y = E(x).

 $5^3 = 4$ (applying E) or $4^7 = 5$ (applying E^{-1})

Take-away

Traditional case

⋆ Alphabet:

 \mathbb{F}_2^n , with $n \simeq 4,8$

- Operations: Logical gates/CPU instructions
- * Metric: minimize time and memory for the evaluation
- ***** Decades of Cryptanalysis

Arithmetization-Oriented

 \star Alphabet:

 \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 32$

- Operations: Large finite-field arithmetic
- \star Metric: minimize the number of multiplications for the verification
- \star \leq 8 years of Cryptanalysis

Primitives overview

Example of Type I: POSEIDON

Low degree primitive

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, 2021

★ S-box:

 $x \mapsto x^3$

 \star Nb rounds:

 $R = 2 \times Rf + RP$ = 8 + (from 56 to 84)

Example of Type II: Rescue

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, 2020

★ S-box:

 $x \mapsto x^3$ and $x \mapsto x^{1/3}$

 \star Nb rounds:

R =from 8 to 26 (2 S-boxes per round)

Example of Type III: Reinforced Concrete

Primitive using Look-up-Tables

L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger and R. Walch, 2022

★ S-box:

Decomp.	
т т т Сотр.	Ţ

⋆ Nb rounds:

R = 7

Context	Symmetric cryptography and cryptanalysis tools	AOP	Algebraic Attacks	Conclusions
000000		00000000000	000000000000000000000000000000000000	000

Take-away

	Туре І	Type II	Type III
	Low-degree primitives	Equivalence relation	Look-up tables
Alphabet	\mathbb{F}_q^m	\mathbb{F}_q^m	specific fields
	for various <i>q</i> and <i>m</i>	for various <i>q</i> and <i>m</i>	
Nb of rounds	many	few	fewer
Plain performance	fast	slow	faster
Nb of constraints	often more	fewer	it depends
			on the proof system

C			

Conclusions

QUIZ !!

To which type of primitives (I, II, or III) belong AES?

Conclusions

QUIZ !!

Could we use AES for advanced protocols?

Algebraic Attacks

Conclusions 000

Attacks against AOP

CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t. The **CICO** problem is: Finding $X, Y \in \mathbb{F}_q^{t-u}$ s.t. $P(X, 0^u) = (Y, 0^u)$.

when t = 3, u = 1.

Need to solve polynomial systems

Solving polynomial systems

* **Univariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

 $\begin{cases} \mathcal{P}_0(X) &= 0 \\ \vdots \\ \mathcal{P}_{m-1}(X) &= 0 . \end{cases}$

Solving polynomial systems

* **Univariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

 $\begin{cases} \mathcal{P}_0(X) &= 0 \\ \vdots \\ \mathcal{P}_{m-1}(X) &= 0 . \end{cases}$

* **Multivariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X_0, \ldots, X_{n-1}]$

$$\begin{cases} \mathcal{P}_0(X_0, \dots, X_{n-1}) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X_0, \dots, X_{n-1}) &= 0 \\ \end{cases}$$

Euclidean division

 \star Integers

$$a = q \times b + r, \ 0 \leq r < b$$

Example: division of 2025 by 100

 $2025 = 20 \times 100 + 25$

Euclidean division

 \star Integers

$$a = q \times b + r, \ 0 \leq r < b$$

Example: division of 2025 by 100

 $2025 = 20 \times 100 + 25$

* Univariate polynomials

 $A = Q \times B + R, \ 0 \leq \deg(R) < \deg(B)$

Example: division of $X^5 + 2X^3 + 3X$ by X^2

$$X^{5} + 2X^{3} + 3X = (X^{3} + 2X) \times X^{2} + 3X$$

Euclidean division

* Integers

$$a = q \times b + r, \ 0 \le r < b$$

Example: division of 2025 by 100

 $2025 = 20 \times 100 + 25$

* Univariate polynomials

 $A = Q \times B + R, \ 0 \leq \deg(R) < \deg(B)$

Example: division of $X^5 + 2X^3 + 3X$ by X^2

$$X^{5} + 2X^{3} + 3X = (X^{3} + 2X) \times X^{2} + 3X$$

* Multivariate polynomials

Euclidean division

 \star Integers

$$a = q \times b + r, \ 0 \leq r < b$$

Example: division of 2025 by 100

 $2025 = 20 \times 100 + 25$

* Univariate polynomials

$$A = Q imes B + R, \ 0 \leq \deg(R) < \deg(B)$$

Example: division of $X^5 + 2X^3 + 3X$ by X^2

$$X^{5} + 2X^{3} + 3X = (X^{3} + 2X) \times X^{2} + 3X$$

* Multivariate polynomials

Need monomial ordering

Algebraic Attacks

Conclusions 000

Algebraic Attacks

Conclusions 000

Algebraic Attacks

Conclusions 000

Algebraic Attacks

Conclusions 000

Algebraic Attacks

Conclusions 000

Monomial ordering

What about the multivariate case?

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions 000

Lexicographical ordering

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions 000

Conclusions

Conclusions 000

AOP 00000000000

AOP 00000000000

Monomial ordering

Some orderings in $\mathbb{F}_q[x_1, x_2, x_3]$.

Lexicographical order (lex)

First, compare degrees of highest variable, then second variable, ...

 $x_1 > x_2 > x_3,$ $x_1 > x_2^2,$ $x_1^2 x_2 > x_1^2 x_3$

Monomial ordering

Some orderings in $\mathbb{F}_q[x_1, x_2, x_3]$.

Lexicographical order (lex)

First, compare degrees of highest variable, then second variable, ...

$$x_1 > x_2 > x_3,$$
 $x_1 > x_2^2,$
 $x_1^2 x_2 > x_1^2 x_3$

Graded lex. order (grlex)

First, compare total degree, then lex. order if equality.

$$x_1 > x_2 > x_3,$$
 $x_1 < x_2^2,$
 $x_1^2 x_2 > x_1^2 x_3$

Monomial ordering

Some orderings in $\mathbb{F}_q[x_1, x_2, x_3]$.

Lexicographical order (lex)

First, compare degrees of highest variable, then second variable, ...

$$x_1 > x_2 > x_3,$$
 $x_1 > x_2^2,$
 $x_1^2 x_2 > x_1^2 x_3$

Graded reverse lex. order (grevlex)

First, compare total degree, then inverse lex. order if equality.

$$x_1 < x_2 < x_3,$$
 $x_1 < x_2^2,$
 $x_1^2 x_2 < x_1^2 x_3$

Graded lex. order (grlex)

First, compare total degree, then lex. order if equality.

$$x_1 > x_2 > x_3,$$
 $x_1 < x_2^2,$
 $x_1^2 x_2 > x_1^2 x_3$

Monomial ordering

Some orderings in $\mathbb{F}_q[x_1, x_2, x_3]$.

Lexicographical order (lex)

First, compare degrees of highest variable, then second variable, ...

$$x_1 > x_2 > x_3,$$
 $x_1 > x_2^2,$
 $x_1^2 x_2 > x_1^2 x_3$

Graded reverse lex. order (grevlex)

First, compare total degree, then inverse lex. order if equality.

$$x_1 < x_2 < x_3,$$
 $x_1 < x_2^2,$
 $x_1^2 x_2 < x_1^2 x_3$

Graded lex. order (grlex)

First, compare total degree, then lex. order if equality.

$$x_1 > x_2 > x_3,$$
 $x_1 < {x_2}^2,$
 $x_1^2 x_2 > {x_1}^2 x_3$

Weighted graded lex. order

First, compare weighted sum of degrees, then graded lex. order.

If wt(
$$x_1$$
) = 3, wt(x_2) = 1 and wt(x_3) = 4, then

 $x_1 < x_2^2 x_3$

Solving polynomial systems

★ **Univariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

$$\begin{cases} \mathcal{P}_0(X) &= 0 \\ \vdots \\ \mathcal{P}_{m-1}(X) &= 0 \end{cases}$$

★ **Multivariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X_0, ..., X_{n-1}]$

$$\begin{cases} \mathcal{P}_{0}(X_{0},...,X_{n-1}) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X_{0},...,X_{n-1}) &= 0 \\ \end{cases}$$

- * Compute a grevlex order GB (F5 algorithm)
- * Convert it into lex order GB (FGLM algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

Context	Symmetric cryptography and cryptanalysis tools	AOP
000000	000000000	0000000000

Strategies

How to efficiency solve polynomial systems to build algebraic attacks?

Context	Symmetric cryptography and cryptanalysis tools	AOP	Algel
000000	000000000	0000000000	000

Strategies

How to efficiency solve polynomial systems to build algebraic attacks?

- by bypassing some rounds of iterated constructions
- \star by changing the modeling
- \star by changing the ordering

AOP 000000000000

Strategies

How to efficiency solve polynomial systems to build algebraic attacks?

- by bypassing some rounds of iterated constructions
- \star by changing the modeling
- \star by changing the ordering
- \star by doing nothing??

Ethereum Foundation Challenges

https://www.zkhashbounties.info/

(November 2021)

Conclusions 000

Solving CICO Problem

- * Feistel-MiMC [Albrecht et al., 2016]
- * POSEIDON [Grassi et al., 2021]
- * Rescue–Prime [Aly et al., 2020]
- * Reinforced Concrete [Grassi et al., 2022]

Ethereum Challenges: solving CICO problem for AO primitives with $q \sim 2^{64}$ prime

A. Bariant, C. Bouvier, G. Leurent, L. Perrin, 2022

Attacks on AOP: When cryptanalysis becomes lucrative!

Clémence Bouvier

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty
Easy	<i>r</i> = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 14	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	<i>r</i> = 22	34	\$26,000

(a) Feistel–MiMC

Category	Parameters	Security level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N = 6, m = 2	25	\$4,000
Medium	N = 7, m = 2	29	\$6,000
Hard	N=5, m=3	30	\$12,000
Hard	N = 8, m = 2	33	\$26,000

(b) Rescue-Prime

Category	Parameters	Security level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4,000
Medium	RP = 13	24	\$6,000
Hard	RP = 19	32	\$12,000
Hard	RP = 24	40	\$26,000

(c) POSEIDON

Category	Parameters	Security level	Bounty
Easy	<i>p</i> = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

ct	Symmetric	cryptography	and cryptanal

AOP 000000000000 Algebraic Attacks

Conclusions 000

Feistel-MiMC

$$\begin{aligned} \mathcal{P}_0(X) &= X \\ \mathcal{Q}_0(X) &= 0 \end{aligned}$$

Attacks on AOP: When cryptanalysis becomes lucrative!

Conclusions 000

Feistel-MiMC

$$\begin{array}{ll} \mathcal{P}_{0}(X) &= X \\ \mathcal{Q}_{0}(X) &= 0 \\ \mathcal{P}_{1}(X) &= (X + c_{0})^{3} \\ \mathcal{Q}_{1}(X) &= X \end{array}$$
Conclusions 000

Feistel-MiMC

$$\begin{array}{ll} \mathcal{P}_{0}(X) &= X \\ \mathcal{Q}_{0}(X) &= 0 \\ \mathcal{P}_{1}(X) &= (X + c_{0})^{3} \\ \mathcal{Q}_{1}(X) &= X \\ & \cdots \\ \mathcal{P}_{i}(X) &= \mathcal{Q}_{i-1}(X) + (\mathcal{P}_{i-1}(X) + c_{i-1})^{3} \\ \mathcal{Q}_{i}(X) &= \mathcal{P}_{i-1}(X) \end{array}$$

Conclusions 000

Feistel-MiMC

$$\begin{cases} \mathcal{P}_{0}(X) &= X \\ \mathcal{Q}_{0}(X) &= 0 \\ \mathcal{P}_{1}(X) &= (X + c_{0})^{3} \\ \mathcal{Q}_{1}(X) &= X \\ \cdots \\ \mathcal{P}_{i}(X) &= \mathcal{Q}_{i-1}(X) + (\mathcal{P}_{i-1}(X) + c_{i-1})^{3} \\ \mathcal{Q}_{i}(X) &= \mathcal{P}_{i-1}(X) \\ \cdots \\ \mathcal{Q}_{r}(X) &= 0 \end{cases}$$

1 variable + (2r + 1) equations

Clémence Bouvier

Attacks on AOP: When cryptanalysis becomes lucrative!

Cryptanalysis Challenge

ory	Parameters	Security level	Bounty		Ca	tegory	Parameters	Securit level	^y Bount	у
	r = 6	9	\$2,000		Ea	sy	N = 4, m = 3	25	\$2,00	0
<i>†</i>	r = 10	15	\$4,000		Ea	sy	N = 6, m = 2	25	\$4,00	0
dium	r = 14	22	\$6,000		M	edium	N=7, m=2	29	\$6,00	0
rd	r = 18	28	\$12,000			d	N = 5, m = 3	30	\$12,0	00
ard	r = 22	3 4	\$26,000	0	()	1	N = 8, m = 2	33	\$26,0	00
	(a) Feistel	–МіМС	4	,12,00			(b) Rescue-	-Prime		
ategory	Parameters	Security level	Bounty	Ca	tegory	Param	eters		Security	Bou
asy	RP = 3	8	\$2,000						level	
asy	RP = 8	16	\$4,000	Eas	sy	p = 28	31474976710597		24	\$4,
edium	RP = 13	24	\$6,000	Me	edium	p = 72	20575940379268	39	28	\$6,
ard	RP = 19	32	\$12,000	Ha	rd	p = 18	34467440737095	51557	32	\$12
ard	RP = 24	40	\$26,000					~		
	(c) Posi	EIDON				(d) Keinforced	Concr	ete	

Attacks on AOP: When cryptanalysis becomes lucrative!

Trick for SPN

Let
$$P = P_0 \circ P_1$$
 be a permutation of \mathbb{F}_p^3 and suppose

Context	Symmetric cryptography and cryptanalysis tools	AOP
000000	000000000	0000000000

Poseidon

★ S-box:

★ Nb rounds:

 $R = 2 \times Rf + RP$ = 8 + (from 3 to 24)

 $x \mapsto x^3$

Attacks on AOP: When cryptanalysis becomes lucrative!

Conclusions 000

Trick for **POSEIDON**

(b) Overview.

Context Symmetric cryptograp 000000 000000000	ny and cryptanalysis tools AOP	Algebraic Attacks	000000000000000000000000000000000000000
--	--------------------------------	-------------------	---

Rescue-Prime

- ★ S-box: $x \mapsto x^3$ and $x \mapsto x^{1/3}$
- * Nb rounds:

(2 steps)

R =from 4 to 8 (2 S-boxes per round)

Conclusions

Trick for Rescue-Prime

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty		Category	Parameters	Securit level	^y Bount	У
Easy	r = 6	9	\$2,000		Easy	N = 4, m = 3	-25-	\$2,00	0
Easy	r = 10	15	\$4,000		Easy	N = 6, m = 2	25	\$4,00	0
Medium	r = 14	22	\$6,000		Medium	N = 7, m = 2	29	\$6,00	0
Hard	r = 18	28	\$12,000		d	N = 5, m = 3	30	\$12,0	00
Hard	r = 22	3 4	\$26,000	201		N = 8, m = 2	33	\$26,0	00
Category	(a) Feistel Parameters	-MIMC Security	Bounty			(b) Rescue-	-Prime		
Eser	<u> DD - 2</u>	level	\$2.000	Catego	ory Param	leters		Security level	Boui
Easy	$\frac{RP}{RP} = 8$	16	\$4,000	Easy	p=2	81474976710597	7	24	\$4.0
Medium	RP = 13	24	\$6,000	Mediu	m $p = 73$	20575940379268	339	28	\$6,0
Hard	RP = 19	32	\$12,000	Hard	p = 1	84467440737095	551557	32	
									\$12,
Hard	RP = 24	40	\$26,000						\$12,

Modeling of Anemoi

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

Model 2.

Context	Symmetric cryptography and cryptanalysis tools	AOP	Algebraic Attacks	Conclus
000000	000000000	0000000000	000000000000000000000000000000000000000	000

Importance of modeling

FreeLunch attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

- \star Define the system
- * Compute a grevlex order GB (**F5** algorithm)
- * Convert it into lex order GB (FGLM algorithm)
- * Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

FreeLunch attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

- \star Define the system
- \star Compute a grevlex order GB (F5 algorithm) \sim can be skipped
- * Convert it into lex order GB (FGLM algorithm)
- * Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

Algebraic Attacks

Conclusions 000

New Challenges

https://www.poseidon-initiative.info/

(November 2024)

New winners

- Poseidon-256:
- 24 bit estimated security: RF=6, RP=8. \$4000 claimed 9 Dec 2024
- 28 bit estimated security: RF=6, RP=9. \$6000 claimed 2 Jan 2025
- 32-bit estimated security: RF=6, RP=11. \$10000
- 40-bit estimated security: RF=6, RP=16. \$15000
- Poseidon-64:
- 24-bit estimated security: RF=6, RP=7 \$4000
- 28-bit estimated security: RF=6, RP=8. \$6000
- 32-bit estimated security: RF=6, RP=10. \$10000
- 40-bit estimated security: RF=6, RP=13. \$15000
- Poseidon-31:
- 24-bit estimated security: RF=4, RP=0 (M31) claimed 29 Nov 2025 and RP=1 (KoalaBear). \$4000 -claimed 30 Nov 2025
- 28-bit estimated security: RF=4, RP=1 (M31) and RP=3 (KoalaBear). \$6000 claimed 29 Nov 2025
- 32-bit estimated security: RF=6, RP=1 (M31) claimed 2 Dec 2025 and RP=4 (KoalaBear).
 \$10000 claimed 5 Dec 2025
- 40-bit estimated security: RF=6, RP=4 (M31 only). \$15000

More than \$30,000

A. Bak,

- A. Bariant,
- A. Boeuf,
- M. Hostettler,
- G. Jazeron

and others...

Algebraic Attacks

Conclusions 000

QUIZ !!

Could we use our trick for SPN on Reinforced Concrete?

C	on	te	X		
	0	0	0	0	

Algebraic Attacks

QUIZ !!

Could we use the FreeLunch attack on Feistel–MiMC?

Conclusions and Perspectives

Conclusions

- $\star\,$ try as many modeling as possible
- \star prefer univariate instead of multivariate system
- \star be careful of tricks to bypass rounds

AOP: a new lucrative business?

Conclusions and Perspectives

Conclusions

- $\star\,$ try as many modeling as possible
- \star prefer univariate instead of multivariate system
- \star be careful of tricks to bypass rounds

AOP: a new lucrative business?

Perspectives

- $\star\,$ study of other attacks
- $\star\,$ study the security of Type III

* ...

Primitives overview

Context	Symmetric cryptography and cryptanalysis tools	AOP	Algebraic Attacks
000000	000000000	0000000000	000000000000000000000000000000000000000

Conclusions

Primitives overview

Primitives overview

Conclusions

Primitives overview

Website

STAP Zoo

AP primitive types STAP use-cases AII STAP ;

STAP

Symmetric Techniques for Advanced Protocols

STAP Zoo

We present a collection of proposed symmetric primitives fitting the STAP description and keep track of recent advances regarding their security and consequent updatest. These may be fittered according to tark fasture, advances regarding their security and consequent updatest. These may be fittered according to tark fasture, advances regarding their security and the security of the security of the security of the security of the BPS) and updatest. The security of the securi

For each STAP-primitive, we provide a brief overview of its main cryptographic characteristics, including:

- · Basic general information: designers, year, conference/journal where it was first introduced and reference.
- Basic cryptographic properties such as description of the primitive (and relevant diagrams when applicable), use-case and proposed parameter sets.
- · Relevant known attacks/weaknesses.
- · Properties of its best hardware implementation.

When applicable, we also mention connections and relations between different designs.

See more at

stap-zoo.com

Website

STAP Zoo

AP primitive types STAP use-cases AII STAP ;

STAP

Symmetric Techniques for Advanced Protocols

STAP Zoo

We present a collection of proposed symmetric primitives fitting the STAP description and keep track of recent advances regarding their security and consequent updatest. These may be fittered according to tark fasture, advances regarding their security and consequent updatest. These may be fittered according to tark fasture, advances regarding their security and the security of the security of the security of the security of the BPS) and updatest. The security of the securi

For each STAP-primitive, we provide a brief overview of its main cryptographic characteristics, including:

- · Basic general information: designers, year, conference/journal where it was first introduced and reference.
- Basic cryptographic properties such as description of the primitive (and relevant diagrams when applicable), use-case and proposed parameter sets.
- · Relevant known attacks/weaknesses.
- · Properties of its best hardware implementation.

When applicable, we also mention connections and relations between different designs.

See more at

Thank you

stap-zoo.com

Attacks on AOP: When cryptanalysis becomes lucrative!