Backstages of Anemoi: A new approach to ZK-friendliness.

Clémence Bouvier 1,2

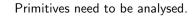
joint work with Pierre Briaud^{1,2}, Pyrros Chaidos³, Léo Perrin² and Vesselin Velichkov^{4,5}

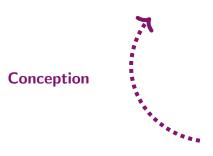
²Inria Paris, ¹Sorbonne Université. ³National & Kapodistrian University of Athens, ⁴University of Edinburgh,

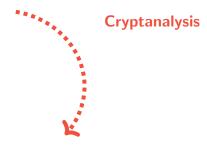
August 29th, 2022

clearmotics

Motivation

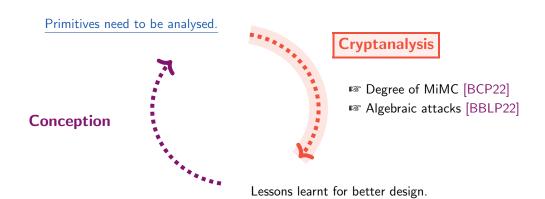






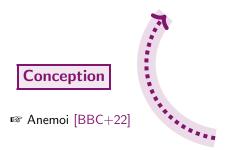
Lessons learnt for better design.

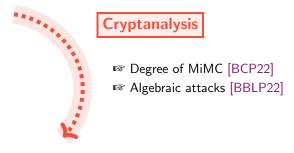
Motivation



Motivation

Primitives need to be analysed.





Lessons learnt for better designs.

A fast moving domain

Many primitives have already been proposed

- ★ MiMC / Feistel-MiMC [AGR+16]
- * Rescue / Rescue-Prime [AAB+20, SAD20]
- ★ Poseidon [GKR+21]
- ★ Reinforced Concrete [GKL+21]
- ★ NEPTUNE [GOP+21]
- ★ Griffin [GHR+22]

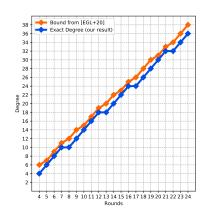
On the Algebraic Degree of Iterated Power Functions, <u>Bouvier</u>, Canteaut, Perrin, submitted to DCC22

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg_a(F) = \max\{wt(i), \ 0 \le i < 2^n, \ \text{and} \ b_i \ne 0\}$$

MiMC₃ [AGR+16]:



On the Algebraic Degree of Iterated Power Functions, Bouvier, Canteaut, Perrin, submitted to DCC22

$$F: \mathbb{F}_{2^{11}} \to \mathbb{F}_{2^{11}}, x \mapsto x^3$$

$$F: \mathbb{F}_{2^{1}}^{11} \to \mathbb{F}_{2^{1}}^{1}, (x_0, \dots, x_{10}) \mapsto$$

$$(x_0x_{10} + x_0 + x_1x_5 + x_1x_9 + x_2x_7 + x_2x_9 + x_2x_{10} + x_3x_4 + x_3x_5 + x_4x_8 + x_4x_9 + x_5x_{10} + x_6x_7 + x_6x_{10} + x_7x_8 + x_9x_{10},$$

$$x_0x_1 + x_0x_2 + x_0x_5 + x_2x_6 + x_3x_9 + x_3x_{10} + x_4 + x_5x_8 + x_5x_9 + x_6x_9 + x_7x_8 + x_7x_9 + x_7 + x_{10},$$

$$x_0x_1 + x_0x_2 + x_0x_{10} + x_1x_5 + x_1x_6 + x_1x_9 + x_2x_7 + x_3x_4 + x_3x_7 + x_4x_5 + x_4x_8 + x_4x_{10} + x_5x_{10} + x_6x_7 + x_6x_8 + x_6x_9 + x_7x_{10} + x_8 + x_9x_{10},$$

$$x_0x_3 + x_0x_6 + x_0x_7 + x_1 + x_2x_5 + x_2x_6 + x_2x_8 + x_2x_{10} + x_3x_6 + x_3x_9 + x_4x_5 + x_4x_6 + x_4 + x_5x_8 + x_5x_{10} + x_6x_9 + x_7x_{10} + x_8x_9 + x_{10},$$

$$x_0x_2 + x_0x_4 + x_1x_2 + x_1x_6 + x_1x_7 + x_2x_9 + x_2x_{10} + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_9 + x_4x_9 + x_5 + x_6x_8 + x_7x_8 + x_8x_9 + x_8x_{10},$$

$$x_0x_5 + x_0x_4 + x_1x_2 + x_1x_3 + x_2x_6 + x_2x_7 + x_2x_{10} + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_9 + x_4x_9 + x_5 + x_6x_8 + x_7x_8 + x_8x_9 + x_8x_{10},$$

$$x_0x_5 + x_0x_6 + x_1x_4 + x_1x_7 + x_1x_8 + x_2 + x_2x_6 + x_2x_3 + x_2x_{10} + x_3x_8 + x_4x_5 + x_4x_8 + x_5x_6 + x_5x_9 + x_7x_8 + x_7x_9 + x_7x_9 + x_8x_{10},$$

$$x_0x_5 + x_0x_6 + x_1x_4 + x_1x_7 + x_1x_8 + x_2 + x_2x_6 + x_2x_7 + x_2x_{10} + x_3x_8 + x_4x_5 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_9 + x_7x_{10} + x_9,$$

$$x_0x_5 + x_0x_6 + x_1x_4 + x_1x_7 + x_1x_8 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_9 + x_7x_{10} + x_9,$$

$$x_0x_7 + x_0x_8 + x_0x_9 + x_1x_3 + x_1x_5 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_9 + x_5x_1 + x_5x_9 + x_5x_$$

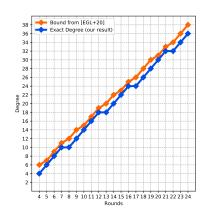
On the Algebraic Degree of Iterated Power Functions, <u>Bouvier</u>, Canteaut, Perrin, submitted to DCC22

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg_a(F) = \max\{wt(i), \ 0 \le i < 2^n, \ \text{and} \ b_i \ne 0\}$$

MiMC₃ [AGR+16]:



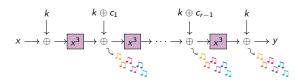
On the Algebraic Degree of Iterated Power Functions, <u>Bouvier</u>, Canteaut, Perrin, submitted to DCC22

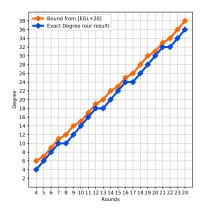
Definition

Algebraic degree of $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg_a(F) = \max\{wt(i), \ 0 \le i < 2^n, \ \text{and} \ b_i \ne 0\}$$

MiMC₃ [AGR+16]:





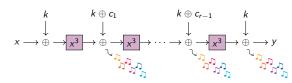
On the Algebraic Degree of Iterated Power Functions, <u>Bouvier</u>, Canteaut, Perrin, submitted to DCC22

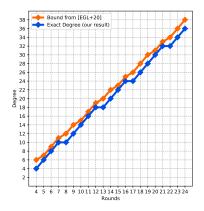
Definition

Algebraic degree of $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg_a(F) = \max\{wt(i), \ 0 \le i < 2^n, \ \text{and} \ b_i \ne 0\}$$

MiMC₃ [AGR+16]:





Take Away

Concepts that are apparently quite simple have actually complex behaviours...

Algebraic attacks

Algebraic Attacks against some Arithmetization-oriented Primitives, Bariant, Bouvier, Leurent, Perrin, ToSC22(3) - to appear

Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Foundation.

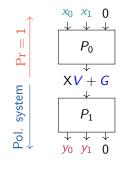
Definition

Constrained Input Constrained Output (CICO)

problem: Find $X, Y \in \mathbb{F}_a^{t-u}$ s.t. $P(X, 0^u) = (Y, 0^u)$.

Results on Feistel-MiMC, Poseidon and Rescue-Prime

- ⋆ build univariate systems
- * a trick for SPN



Algebraic attacks

Algebraic Attacks against some Arithmetization-oriented Primitives, Bariant, Bouvier, Leurent, Perrin, ToSC22(3) - to appear

Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Foundation.

Definition

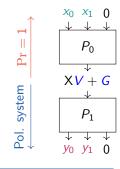
Constrained Input Constrained Output (CICO)

problem:

Find
$$X, Y \in \mathbb{F}_q^{t-u}$$
 s.t. $P(X, 0^u) = (Y, 0^u)$.

Results on Feistel-MiMC, Poseidon and Rescue-Prime

- ⋆ build univariate systems
- * a trick for SPN



Take Away

It might be better to avoid low degree functions...

Content

Backstages of Anemoi: A new approach to ZK-friendliness.

- Preliminaries
 - Emerging uses in symmetric cryptography
 - CCZ-equivalence
- 2 Anemoi
 - New S-box: Flystel
 - New Mode: Jive
 - Comparison to previous work
- Conclusions and Future work

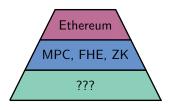
- Preliminaries
 - Emerging uses in symmetric cryptography
 - CCZ-equivalence
- 2 Anemoi
 - New S-box: Flystel
 - New Mode: Jive
 - Comparison to previous work
- Conclusions and Future work

A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

- ★ Multiparty Computation (MPC)
- ★ Homomorphic Encryption (FHE)
- ★ Systems of Zero-Knowledge (ZK) proofs Example: SNARKs, STARKs, Bulletproofs

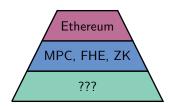


A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

- ★ Multiparty Computation (MPC)
- ★ Homomorphic Encryption (FHE)
- ★ Systems of Zero-Knowledge (ZK) proofs Example: SNARKs, STARKs, Bulletproofs



⇒ What differs from the "usual" case?

Comparison with "usual" case

A new environment

"Usual" case

★ Field size:

 \mathbb{F}_{2^n} , with $n \simeq 4.8$ (AES: n = 8).

* Operations:

logical gates/CPU instructions

Arithmetization-friendly

★ Field size:

 \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.

* Operations:

large finite-field arithmetic

Comparison with "usual" case

A new environment

"Usual" case

- * Field size: \mathbb{F}_{2^n} , with $n \simeq 4.8$ (AES: n = 8).
- ★ Operations: logical gates/CPU instructions

New properties

"Usual" case

 \star Operations:

$$y \leftarrow E(x)$$

* Efficiency: implementation in software/hardware

Arithmetization-friendly

★ Field size:

 $\overline{\mathbb{F}_q}$, with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$.

★ Operations: large finite-field arithmetic

Arithmetization-friendly

* Operations:

$$y == E(x)$$

* Efficiency: integration within advanced protocols

Comparison with "usual" case

A new environment

"Usual" case

* Field size:

$$\mathbb{F}_{2^n}$$
, with $n \simeq 4.8$ (AES: $n = 8$).

⋆ Operations:

logical gates/CPU instructions

Arithmetization-friendly

★ Field size:

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \geq 64$.

★ Operations: large finite-field arithmetic

New properties

"Usual" case

* Operations:

$$y \leftarrow E(x)$$

* Efficiency: implementation in software/hardware

Arithmetization-friendly

* Operations:

$$y == E(x)$$

* Efficiency: integration within advanced protocols

Our approach

Need: verification using few multiplications.

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 \Rightarrow vulnerability to some attacks...

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

⇒ vulnerability to some attacks...

New approach:

CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

Affine-equivalence

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are affine equivalent if

$$F(x) = (B \circ G \circ A)(x)$$
,

where A, B are affine permutations.

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$F(x) = (B \circ G \circ A)(x) + C(x)$$
,

where A, B, C are affine functions with A, B permutations s.t.

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ (x, F(x)) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q} \right\},\,$$

where A is an affine permutation, A(x) = L(x) + c.

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$\Gamma_{\mathcal{F}} = \left\{ \left(x, \mathcal{F}(x) \right) \mid x \in \mathbb{F}_q \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, \mathcal{G}(x) \right) \mid x \in \mathbb{F}_q \right\},$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_a \to \mathbb{F}_a$ and $G: \mathbb{F}_a \to \mathbb{F}_a$ are **CCZ-equivalent** if

$$\Gamma_F = \{ (x, F(x)) \mid x \in \mathbb{F}_q \} = \mathcal{A}(\Gamma_G) = \{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_q \},$$

where A is an affine permutation, $A(x) = \mathcal{L}(x) + c$.

* EA-equivalence and CCZ-equivalence preserve differential and linear properties,

$$\delta_{\mathcal{G}}(a,b) = \delta_{\mathcal{F}}(\mathcal{L}^{-1}(a,b))$$
 and $\mathcal{W}_{\mathcal{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \mathcal{W}_{\mathcal{F}}(\mathcal{L}^{T}(\alpha,\beta))$

* EA-equivalence preserves the degree BUT CCZ-equivalence does not!

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_a \to \mathbb{F}_a$ and $G: \mathbb{F}_a \to \mathbb{F}_a$ are **CCZ-equivalent** if

$$\Gamma_{F} = \{ (x, F(x)) \mid x \in \mathbb{F}_{q} \} = \mathcal{A}(\Gamma_{G}) = \{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q} \},$$

where A is an affine permutation, A(x) = L(x) + c.

* EA-equivalence and CCZ-equivalence preserve differential and linear properties,

$$\delta_{\mathbf{G}}(a,b) = \delta_{\mathbf{F}}(\mathcal{L}^{-1}(a,b)) \text{ and } \mathcal{W}_{\mathbf{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \mathcal{W}_{\mathbf{F}}(\mathcal{L}^{T}(\alpha,\beta))$$

- ★ EA-equivalence preserves the degree BUT CCZ-equivalence does not!
 - ⇒ Can we get CCZ-equivalence from EA-equivalence?

12 / 36 Clémence Bouvier

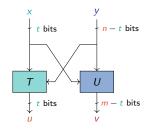
Twist

Using isomorphisms $\mathbb{F}_2^n \simeq \mathbb{F}_2^t \times \mathbb{F}_2^{n-t}$ and $\mathbb{F}_2^m \simeq \mathbb{F}_2^t \times \mathbb{F}_2^{m-t}$:

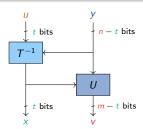
Definition

 $F: \mathbb{F}_2^t \times \mathbb{F}_2^{n-t} \to \mathbb{F}_2^t \times \mathbb{F}_2^{m-t}$ and $G: \mathbb{F}_2^t \times \mathbb{F}_2^{n-t} \to \mathbb{F}_2^t \times \mathbb{F}_2^{m-t}$ are t-twist-equivalent if T_y is a permutation for all y and

$$G(u, y) = (T_y^{-1}(u), U_{T_y^{-1}(u)}(y)).$$



t-twist \iff



$$\Gamma_{F} = \{(x, F(x)) \mid x \in \mathbb{F}_{2}^{n}\}$$

swap matrix M_t

$$\Gamma_G = \{(x, G(x)) \mid x \in \mathbb{F}_2^n\}$$

Theorem [Canteaut, Perrin, FFA19]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

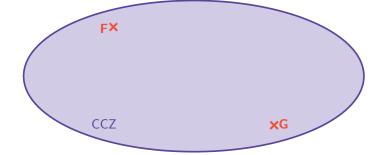
EA transformation + t-twist + EA transformation

$$\Gamma_F = A(\Gamma_G)$$
,

with \mathcal{A} affine permutation.

 \Downarrow

$$\Gamma_F = (A \cdot M_t \cdot B)(\Gamma_G)$$
,



CCZ = EA + twist

Theorem [Canteaut, Perrin, FFA19]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

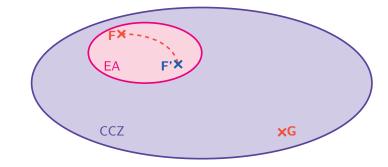
EA transformation + t-twist + EA transformation

$$\Gamma_F = \mathcal{A}(\Gamma_G)$$
,

with \mathcal{A} affine permutation.

$$\Downarrow$$

$$\Gamma_F = (A \cdot M_t \cdot B)(\Gamma_G)$$
,



CCZ = EA + twist

Theorem [Canteaut, Perrin, FFA19]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

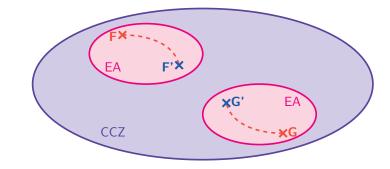
EA transformation + t-twist + EA transformation

$$\Gamma_F = A(\Gamma_G)$$
,

with \mathcal{A} affine permutation.

$$\Downarrow$$

$$\Gamma_{F} = (A \cdot M_{t} \cdot B)(\Gamma_{G})$$
,



CCZ = EA + twist

Theorem [Canteaut, Perrin, FFA19]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

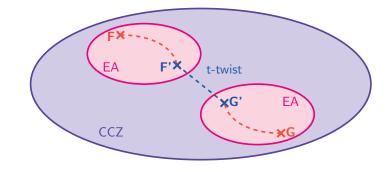
EA transformation + t-twist + EA transformation

$$\Gamma_F = \mathcal{A}(\Gamma_G)$$
,

with \mathcal{A} affine permutation.

$$\Downarrow$$

$$\Gamma_F = (A \cdot M_t \cdot B)(\Gamma_G)$$
,

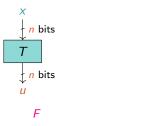


Example: Inverse

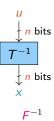
Let
$$F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$
,

$$\Gamma_{\textit{F}} = \left\{ \left. (x, \textit{F}(x)) \mid x \in \mathbb{F}_{2^n} \right\} \quad \text{and} \quad \Gamma_{\textit{F}^{-1}} = \left\{ \left. (y, \textit{F}^{-1}(y)) \mid y \in \mathbb{F}_{2^n} \right\} \right. \\ = \left. \left\{ \left. (\textit{F}(x), x) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. (\textit{F}(x), x) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. \left. (\textit{F}(x), x) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right\} \right. \\ \left. \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right. \\ \left. \left(\textit{F}(x), x \right) \mid x \in \mathbb{F}_{2^n} \right) \right$$

$$\begin{pmatrix} x \\ \digamma(x) \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \begin{pmatrix} \digamma(x) \\ x \end{pmatrix} \quad \Rightarrow \quad \text{swap matrix } M_n = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \ .$$

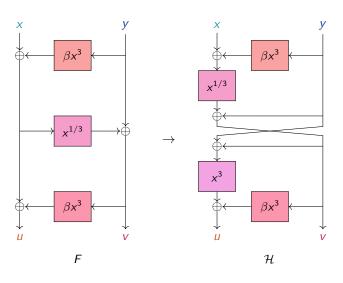


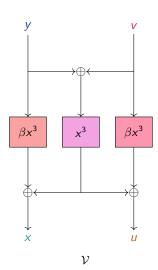
$$\begin{array}{c}
\mathsf{n-twist} \\
\iff \\
\left(\mathsf{n}=t\right)
\end{array}$$



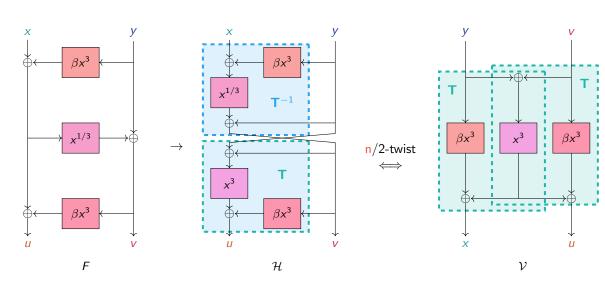
 \Rightarrow **F** and **F**⁻¹ are CCZ-equivalent and the degree is indeed not preserved.

Example: Butterfly [PUB16]





Example: Butterfly [PUB16]



Sum up on CCZ-equivalence

Important things to remember!

Let
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ s.t. $\Gamma_G = \mathcal{A}(\Gamma_F)$, with $\mathcal{A}(x) = \mathcal{L}(x) + c$.

* F and G have the same differential properties

$$\delta_{\mathbf{G}}(a,b) = \delta_{\mathbf{F}}(\mathcal{L}^{-1}(a,b)).$$

Important things to remember!

Let
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ s.t. $\Gamma_G = \mathcal{A}(\Gamma_F)$, with $\mathcal{A}(x) = \mathcal{L}(x) + c$.

* F and G have the same differential properties

$$\delta_{\mathsf{G}}(\mathsf{a},\mathsf{b}) = \delta_{\mathsf{F}}(\mathcal{L}^{-1}(\mathsf{a},\mathsf{b})).$$

* F and G have the same linear properties

$$W_{\mathbf{G}}(\alpha,\beta) = (-1)^{\mathbf{c}\cdot(\alpha,\beta)}W_{\mathbf{F}}(\mathcal{L}^{\mathsf{T}}(\alpha,\beta)).$$

Important things to remember!

Let
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ s.t. $\Gamma_G = \mathcal{A}(\Gamma_F)$, with $\mathcal{A}(x) = \mathcal{L}(x) + c$.

* F and G have the same differential properties

$$\delta_{\mathsf{G}}(\mathsf{a},\mathsf{b}) = \delta_{\mathsf{F}}(\mathcal{L}^{-1}(\mathsf{a},\mathsf{b})).$$

* F and G have the same linear properties

$$W_{\mathbf{G}}(\alpha,\beta) = (-1)^{\mathbf{c}\cdot(\alpha,\beta)}W_{\mathbf{F}}(\mathcal{L}^{\mathsf{T}}(\alpha,\beta)).$$

★ Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

Important things to remember!

Let
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ s.t. $\Gamma_G = \mathcal{A}(\Gamma_F)$, with $\mathcal{A}(x) = \mathcal{L}(x) + c$.

* F and G have the same differential properties

$$\delta_{\mathsf{G}}(\mathsf{a},\mathsf{b}) = \delta_{\mathsf{F}}(\mathcal{L}^{-1}(\mathsf{a},\mathsf{b})).$$

* F and G have the same linear properties

$$W_{\mathbf{G}}(\alpha,\beta) = (-1)^{\mathbf{c}\cdot(\alpha,\beta)}W_{\mathbf{F}}(\mathcal{L}^{\mathsf{T}}(\alpha,\beta)).$$

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is not preserved.

Important things to remember!

Let
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ s.t. $\Gamma_G = \mathcal{A}(\Gamma_F)$, with $\mathcal{A}(x) = \mathcal{L}(x) + c$.

* F and G have the same differential properties

$$\delta_{\mathsf{G}}(\mathsf{a},\mathsf{b}) = \delta_{\mathsf{F}}(\mathcal{L}^{-1}(\mathsf{a},\mathsf{b})) .$$

* F and G have the same linear properties

$$W_{\mathbf{G}}(\alpha,\beta) = (-1)^{\mathbf{c}\cdot(\alpha,\beta)}W_{\mathbf{F}}(\mathcal{L}^{\mathsf{T}}(\alpha,\beta)).$$

★ Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

- Preliminaries
 - Emerging uses in symmetric cryptography
 - CCZ-equivalence
- 2 Anemoi
 - New S-box: Flystel
 - New Mode: Jive
 - Comparison to previous work
- Conclusions and Future work

⋆ Design goals:

- * Compatibility with Various Proof Systems.
- * Limited Reliance on Randomness.
- * Different Algorithms for Different Purposes.
- * Design Consistency.

⋆ Design goals:

- \star Compatibility with Various Proof Systems. \rightarrow R1CS, Plonk, AIR, \dots
- * Limited Reliance on Randomness.
- * Different Algorithms for Different Purposes.
- * Design Consistency.

19 / 36 Clémence Bouvier Anemoi

⋆ Design goals:

- ★ Compatibility with Various Proof Systems.
- \rightarrow R1CS, Plonk, AIR, . . .

* Limited Reliance on Randomness.

- \rightarrow fixed MDS matrices
- * Different Algorithms for Different Purposes.
- * Design Consistency.

⋆ Design goals:

- * Compatibility with Various Proof Systems.
- * Limited Reliance on Randomness.
- * Different Algorithms for Different Purposes.
- * Design Consistency.

- → R1CS, Plonk, AIR, ...
- \rightarrow fixed MDS matrices
- \rightarrow hash function \neq compression function

⋆ Design goals:

- * Compatibility with Various Proof Systems.
- * Limited Reliance on Randomness.
- ⋆ Different Algorithms for Different Purposes.
- * Design Consistency.

- → R1CS, Plonk, AIR, ...
- → fixed MDS matrices
- \rightarrow hash function \neq compression function
- \rightarrow same structure for all uses

⋆ Design goals:

- * Compatibility with Various Proof Systems.
- * Limited Reliance on Randomness.
- ⋆ Different Algorithms for Different Purposes.
- * Design Consistency.

- → R1CS, Plonk, AIR, ...
- → fixed MDS matrices
- \rightarrow hash function \neq compression function
- \rightarrow same structure for all uses

* Our contributions:

- * Link between AO and CCZ-equivalence
- * Flystel: a new S-box
- * Jive: a new mode

New S-box: Flystel New Mode: Jive Comparison to previous work

Why Anemoi?

* Auld

Alliance between France and Scotland

20 / 36 Clémence Bouvier Anemo:

New S-box: Flystel New Mode: Jive Comparison to previous work

Why Anemoi?

* Auld Alliance between France and Scotland

* Athena
Greek goddess, protector of Athens

20 / 36 Clémence Bouvier Anemoi

Why Anemoi?

- * Auld Alliance between France and Scotland
- * Athena
 Greek goddess, protector of Athens
- * Anemoi
 Greek gods of winds

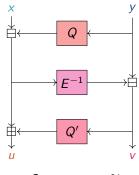
The Flystel

$$\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \mathsf{Flystel}$$

A 3-round Feistel-network with

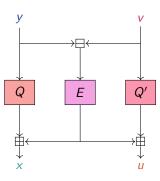
 $Q: \mathbb{F}_q \to \mathbb{F}_q$ and $Q': \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

High-degree permutation



Open Flystel ${\cal H}.$

Low-degree function



Closed Flystel ${\cal V}$.

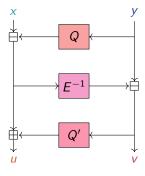
The Flystel

$$\Gamma_{\mathcal{H}} = \left\{ ((x, y), \mathcal{H}((x, y))) \mid (x, y) \in \mathbb{F}_q^2 \right\}$$

$$= \mathcal{A}\left(\left\{ ((v, y), \mathcal{V}((v, y))) \mid (v, y) \in \mathbb{F}_q^2 \right\} \right)$$

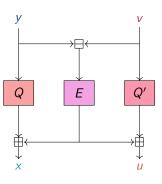
$$= \mathcal{A}(\Gamma_{\mathcal{V}})$$

High-degree permutation



Open Flystel \mathcal{H} .

Low-degree function

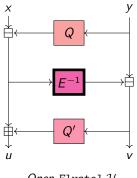


Closed Flystel ${\cal V}.$

Advantage of CCZ-equivalence

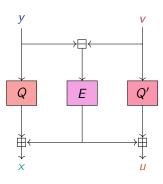
* High Degree Evaluation.

High-degree permutation



Open Flystel ${\cal H}.$

Low-degree function

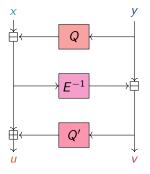


Closed Flystel ${\cal V}.$

- * High Degree Evaluation.
- * Low Cost Verification.

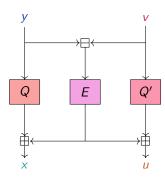
$$(u,v) == \mathcal{H}(x,y) \Leftrightarrow (x,u) == \mathcal{V}(y,v)$$

High-degree permutation



Open Flystel \mathcal{H} .

Low-degree function

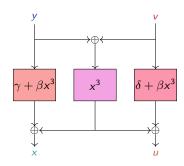


Closed Flystel ${\cal V}$.

Flystel in \mathbb{F}_{2^n}

$$\mathcal{H}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) \mapsto & \left(x + \beta y^3 + \gamma + \beta \left(y + (x + \beta y^3 + \gamma)^{1/3}\right)^3 + \delta \right., \\ & y + (x + \beta y^3 - \gamma)^{1/3} \right). \end{cases} \mathcal{V}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) & \mapsto \left((y + v)^3 + \beta y^3 + \gamma \right., \\ (y + v)^3 + \beta v^3 + \delta\right), \end{cases}$$

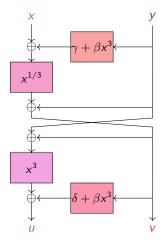
Open Flystel₂.



Closed Flystel₂.

23 / 36 Clémence Bouvier Anemoi

Properties of Flystel in \mathbb{F}_{2^n}



Degenerated Butterfly.

First introduced by [Perrin et al. 2016].

Well-studied butterfly.

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

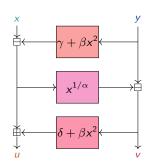
- * Differential properties
 - \star Flystel₂: $\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$
- Linear properties

* Flystel₂:
$$W_{\mathcal{H}} = W_{\mathcal{V}} = 2^{2n-1} - 2^n$$

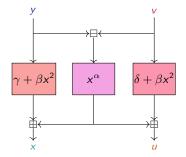
- * Algebraic degree
 - * Open Flystel₂: $deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $deg_{\mathcal{V}} = 2$

Flystel in \mathbb{F}_p

$$\mathcal{H}: \begin{cases} \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} & \to \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} \\ (x,y) & \mapsto \left(x - \beta y^{2} - \gamma + \beta \left(y - (x - \beta y^{2} - \gamma)^{1/\alpha}\right)^{2} + \delta \right., & \mathcal{V}: \begin{cases} \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} & \to \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} \\ (y,v) & \mapsto \left((y - v)^{\alpha} + \beta y^{2} + \gamma \right., \\ (v - y)^{\alpha} + \beta v^{2} + \delta\right) . \end{cases}$$



usually $\alpha = 3$ or 5.



Open Flystelp.

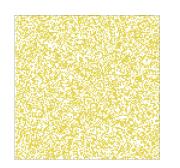
Closed $Flystel_p$.

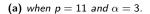
Properties of Flystel in \mathbb{F}_p

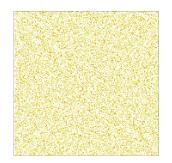
 \star Differential properties Flystel_p has a differential uniformity equals to $\alpha-1$.

26 / 36 Clémence Bouvier Anemo:

★ Differential properties Flystel_p has a differential uniformity equals to $\alpha - 1$.







(b) when p = 13 and $\alpha = 5$.

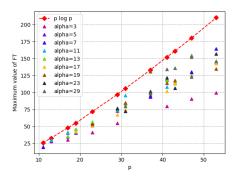
(c) when
$$p = 17$$
 and $\alpha = 3$.

DDT of $Flystel_p$.

Properties of Flystel in \mathbb{F}_p

★ Linear properties

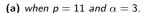
$$W \leq p \log p$$
?



Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_p

★ Linear properties



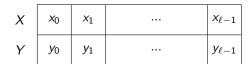
(b) when p = 13 and $\alpha = 5$.

(c) when p = 17 and $\alpha = 3$.

LAT of Flystel_p.

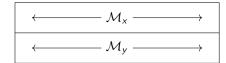
The SPN Structure

The internal state of Anemoi and its basic operations.



(a) Internal state

(c) The S-box layer S.

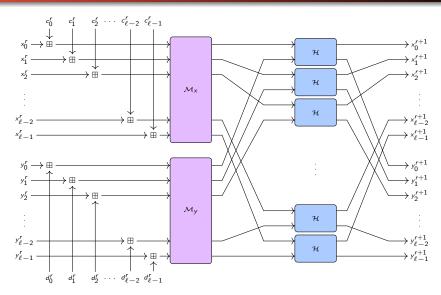


(b) The diffusion layer \mathcal{M} .

$$\begin{array}{c|c} X^i \\ \hline Y^i \end{array} \quad += \begin{array}{c|c} C^i \\ \hline D^i \end{array}$$

(d) The constant addition A.

The SPN Structure

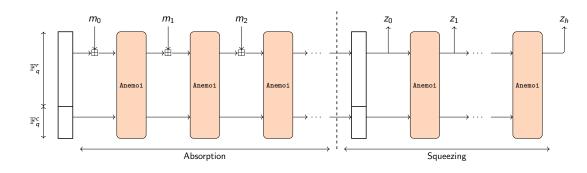


Overview of Anemoi.

New Mode

⋆ Hash function:

* input: arbitrary length* ouput: fixed length



New Mode

⋆ Hash function:

★ input: arbitrary length

⋆ ouput: fixed length

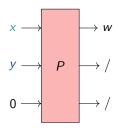
★ Compression function:

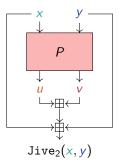
⋆ input: fixed length

⋆ output: length 1

Dedicated mode \Rightarrow 2 words in 1

$$(x, y) \mapsto x + y + u + v$$
.





Comparison for R1CS

SNARK performances using R1CS representation:

 \sim number of multiplications

m	Rescue'	Poseidon	GRIFFIN	Anemoi		m	Rescue'	Poseidon	GRIFFIN	
4	224	232	112	96		4	264	264	110	
6	216	264	-	120	_	6	288	315	-	
8	256	296	176	160	_	8	384	363	162	
(a) when $\alpha = 3$.				_			(b) when α	= 5.		

R1CS constraints for Rescue-Prime, Poseidon, Griffin and Anemoi, s=128, and prime field of 256 bits.

Comparison for Plonk

SNARK performances using Plonk representation:

 \sim multiplications gates + addition gates

m	Rescue'	Poseidon	GRIFFIN	Anemoi	m	Rescue'	Poseidon	GRIFFIN	
4	560	1336	334	216	4	528	1032	287	
6	756	3024	-	330	6	768	2265	-	
8	1152	5448	969	520	8	1280	4003	821	
(a) when $\alpha=3$.						(b) when α	= 5.	_	

Plonk constraints for Rescue-Prime, Poseidon, Griffin and Anemoi, s=128, and prime field of 256 bits.

32 / 36 Clémence Bouvier Anemoi

Comparison for Plonk (with optimizations)

	m	Constraints
Poseidon		88
		110
Reinforced Concrete	2	236
	3	378
AnemoiJive	2	79

(a)	With	3	wires.	
-----	------	---	--------	--

	m	Constraints
Poseidon	2	82
POSEIDON		98
Reinforced Concrete	2	174
	3	267
AnemoiJive	2	60

(b) With 4 wires.

Constraints comparison with $\alpha = 5$, s = 128, and prime field sizes of 256, 384.

Comparison for AIR

STARK performances using AIR representation:

$$w \cdot T \cdot d_{\mathsf{max}}$$

Here
$$w = m$$
, $d_{max} = \alpha$, and $T = R$ (or $RF + \lceil RP/m \rceil$).

_m	Rescue'	Poseidon	Griffin	Anemoi	
4	168	348	168	144	
6	162	396	-	180	
8	192	480	264	240	

m	Rescue'	Poseidon	GRIFFIN	Anemoi
4	220	440	220	240
6	240	540	-	300
8	320	640	360	400

(a) with $\alpha = 3$.

(b) with
$$\alpha = 5$$
.

AlR constraints for Rescue-Prime, Poseidon, Griffin and Anemoi, s=128, and prime field of 256 bits.

Conclusions

- ★ A new family of ZK-friendly hash functions:
 - ⇒ Anemoi efficient accross proof system
- * New observations of fundamental interest:
 - * Standalone components:
 - ⋆ New S-box: Flystel
 - * New mode: Jive
 - * Identify a link between AO and CCZ-equivalence

35 / 36 Clémence Bouvier Anemoi

Conclusions

- ★ A new family of ZK-friendly hash functions:
 - ⇒ Anemoi efficient accross proof system
- * New observations of fundamental interest:
 - * Standalone components:
 - ⋆ New S-box: Flystel
 - * New mode: Jive
 - * Identify a link between AO and CCZ-equivalence

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

35 / 36 Clémence Bouvier Anemoi

Future work

- ★ On Anemoi:
 - * pushing further the cryptanalysis.
 - * explaining linear properties of the Flystel.
 - * constructing a Flystel with more branches? \Rightarrow see [BCLP22]
- * Extending the study of the algebraic degree of MiMC to
 - \star other permutations x^d for any d.
 - * SPN constructions.
 - \Rightarrow see [LAW+22]: can we extend the coefficient grouping strategy to other primitives than Chaghri?

Clémence Bouvier Anemoi

Future work

- ★ On Anemoi:
 - ⋆ pushing further the cryptanalysis.
 - * explaining linear properties of the Flystel.
 - ★ constructing a Flystel with more branches?
 ⇒ see [BCLP22]
- ★ Extending the study of the algebraic degree of MiMC to
 - \star other permutations x^d for any d.
 - * SPN constructions.
 - \Rightarrow see [LAW+22]: can we extend the coefficient grouping strategy to other primitives than Chaghri?

Thanks for your attention!

36 / 36 Clémence Bouvier Anemoi