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A fast moving domain

Many primitives have already been proposed

* MIMC / Feistel-MiMC [AGR+16]

* Rescue |/ Rescue—Prime [AAB+20, SAD20]

X

POSEIDON [GKR+21]
* Reinforced Concrete [GKL+21]

+ NEPTUNE [GOP+21]

y
S
*

GRIFFIN [GHR+22]
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Degree of MiMC

1 On the Algebraic Degree of Iterated Power Functions,
Bouvier, Canteaut, Perrin, submitted to DCC22

3g{ =®= Bound from [EGL+20]
== Exact Degree (our result)

Definition

Algebraic degree of F : Fon — Fon:

deg,(F) = max{wt(i), 0 << 2" and b; # 0}

Degree

MiMC; [AGR+16]:
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Degree of MiMC

== On the Algebraic Degree of Iterated Power Functions,
Bouvier, Canteaut, Perrin, submitted to DCC22

F:F211—>F211,Xl—>x3
F:F3 — F3( ) —
syt = N (X0, - -5 X10

(xox10 + X0 + X1X5 + x1Xg + xpXx7 + xpXg + xpx10 + X3X4 + X3X5 + x4Xg + x4Xg + x5x10 + XgX7 + XgX10 + X7Xg + X9X105

Xpx1 +XxpX6 +xx5 + xoxg + x3x5 + x3xg + X3x10 + X4 + X558 + xX5x9 + XgXg + x7xg + x7x9 + x7 + x10,

X0X1 + x0X2 + X0X10 + X1X5 + x1%6 + x1xg + xpx7 + X3x4 + x3x7 + X4x5 + x4xg + x4x10 + X5X10 + X6X7 + X6Xg + X6Xg + x7x10 + X + x9X10,

X0X3 +X0X6 + X0X7 + X1 +x0x5 + xpX6 + X0xg + Xpx10 + X3%6 + x3xg + X3X9 + Xg4x5 + x4x6 + x4 + x5xg + X5X10 + X6Xg + x7X9 + X7 + XgXg + X0,
X0X2 T X0xq + x1x2 + x1%6 + x1x7 + xpXg + xpx10 + X3X5 + x3x6 + x3x7 + x3Xg + x4x5 + x4x7 + x4xg + x5 + xgxg + x7xg + xgXg + xgx10,

X0X5 + X0X7 + XoXg + x1x2 + x1x3 + xpX6 + xpx7 + Xpx10 + X3xg + X4x5 + X4xg + X5X6 + X5Xg + x7Xg + x7x9 + x7x10 + X9,

X0x3 +X0X6 + X1%4 + x1x7 + x1xg + X0 + X3%6 + X3x7 +x3X9 + x4x7 +4x9 + X4x10 + X5%6 + X5x7 + X5 + Xxg + x7x10 + xgx10 + x5 + X9x10>
X0X7 + X0xg + X0X9 + x1x3 + X1x5 + Xpx3 + Xox7 + Xoxg + X3X10 + X4X6 + x4X7 + x4xg + x4x10 + X5%6 + X5xg + X5x10 + X6 + X7x9 + Xgxg + X9x10,
XoX4 + XoXg T x1X6 + x1xg + x1x9 + x2x3 + Xpx4 + X3x7 + x3xg + X4x9 + X5x6 + X5xX9 + X6X7 + X6X10 + *XgX9 + xgx10 + X10,

Xgx10 + X1 X4 + x1x7 + XoX5 + xpxg + XpXg + X3 + X4X7 + xgxg + x4x10 + X5Xg + X5x10 + X6X7 + XgXg + X + X7x10 + X9,

xox5 + xpx10 + X1 xg + x1x9 + x1x10 + X0Xg + Xoxg + x3x4 + x3xg + x3xg + x5x7 + X5xg + x5xg + xgx7 + Xgxg + x7 + xgx109 + nglo) .
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Degree

== Bound from [EGL+20]
=@= Exact Degree (our result)
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Concepts that are apparently quite simple have actually complex behaviours...

/36 Clémence Bouvier
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Algebraic attacks

= Algebraic Attacks against some Arithmetization-oriented Primitives,
Bariant, Bouvier, Leurent, Perrin, ToSC22(3) - to appear

* build univariate systems

Cryptanalysis Challenge for ZK-friendly Hash Functions!

In November 2021, by the Ethereum Foundation. * a trick for SPN
Xo X1 0
Definition T S—
Constrained Input Constrained Output (CICO) & Po
problem: XV\L c
Find X, Y € F5~¥ s.t. P(X,04) = (Y,0%). £ T
& Py
Results on Feistel-MiMC, POSEIDON and Rescue—Prime 3 T 3 7
e Yoy1 0
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Definition T S—
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Find X, Y € F5~¥ s.t. P(X,04) = (Y,0%). £ T
& Py
Results on Feistel-MiMC, POSEIDON and Rescue—Prime 3 T 3 7
e Yoy1 0

Take Away
It might be better to avoid low degree functions...
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o Emerging uses in symmetric cryptography
o CCZ-equivalence

Clémence Bouvier

Emerging uses in symmetric cryptography
CCZ-equivalence

Anemoi



Preliminaries

Emerging uses in symmetric cryptography
CCZ-equivalence

A need of new primitives

‘ Problem: Designing new symmetric primitives

Protocols requiring new primitives:
+ Multiparty Computation (MPC)

+ Homomorphic Encryption (FHE)

* Systems of Zero-Knowledge (ZK) proofs
Example: SNARKs, STARKSs, Bulletproofs
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A need of new primitives

‘ Problem: Designing new symmetric primitives

Protocols requiring new primitives:
+ Multiparty Computation (MPC)
+ Homomorphic Encryption (FHE)

* Systems of Zero-Knowledge (ZK) proofs
Example: SNARKs, STARKSs, Bulletproofs

= What differs from the “usual”’ case?
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Preliminaries

Emerging uses in symmetric cryptography
CCZ-equivalence

Comparison with “usual” case

A new environment

“Usual” case Arithmetization-friendly
* Field size: * Field size:
Fon, with n ~ 4,8 (AES: n=38). Fq, with g € {2",p},p~2", n> 64 .
* Operations: * Operations:
logical gates/CPU instructions large finite-field arithmetic
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Emerging uses in symmetric cryptography
CCZ-equivalence

Comparison with “usual” case

A new environment

“Usual” case Arithmetization-friendly
* Field size: * Field size:
Fon, with (AES: n = 8). F,, with g € {27 p},p ~ 2",.
* Operations: * Operations:
logical gates/CPU instructions large finite-field arithmetic

New properties

“Usual” case Arithmetization-friendly
* Operations: * Operations:
y < E(x) y == E(x)
* Efficiency: * Efficiency:
implementation in software/hardware integration within advanced protocols
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Preliminaries q g -
Emerging uses in symmetric cryptography

CCZ-equivalence

Our approach

Need: verification using few multiplications.
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Preliminaries q g -
Emerging uses in symmetric cryptography

CCZ-equivalence

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

= vulnerability to some attacks...

New approach: )
CCZ-equivalence

A function is arithmetization-oriented if it is CCZ-equivalent to a function that can be verified
efficiently.
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Preliminaries 5 5 -
Emerging uses in symmetric cryptography

CCZ-equivalence

Affine-equivalence

F:Fq =T and G : Fq — Fq are affine equivalent if

F(x)=(BoGoA)(x),

where A, B are affine permutations.

Definition

| \

F:Fqg—TFgand G :Fq — Fq are extended affine equivalent if
F(x)=(Bo GoA)(x)+ C(x),
where A, B, C are affine functions with A, B permutations s.t.

e ={(x A0 xe el = (s ) {0x 600y 1x ey}




Preliminaries

Emerging uses in symmetric cryptography
CCZ-equivalence

CCZ-equivalence

Definition
F:Fq —Fqand G :Fy; — F, are extended affine equivalent if

Fe={(x,F(x)) | xeFq} = <CAA_11 g) {(x,G(x)) | xeFq},
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CCZ-equivalence

F:Fq —Fqand G :Fy; — F, are extended affine equivalent if

Fe={(x,F(x)) | xeFq} = (CAA_ll g) {(x,G(x)) | xeFq},

F:Fq—TFqand G :F; — Fy are CCZ-equivalent if
Mr = { (0 F()) [ x €Fg} = A(Te) = {A(x G(x)) | x €Fg} .
where A is an affine permutation, A(x) = £(x) + c.

\
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CCZ-equivalence

F:Fq —Fqand G :Fy; — F, are extended affine equivalent if

Fe={(x,F(x)) | xeFq} = (CAA_ll g) {(x,G(x)) | xeFq},

F:Fq—TFqand G :F; — Fy are CCZ-equivalent if
Me={ (. F(0) [ x €Fg} = A(Te) = {A(x, G(x)) | x €Fy} .
where A is an affine permutation, A(x) = £(x) + c.

\

* EA-equivalence and CCZ-equivalence preserve differential and linear properties,
dc(a,b) = 6r(L7%(a,b)) and We(a,B) = (~1)“IWe(LT(a, 5))

* EA-equivalence preserves the degree BUT CCZ-equivalence does not!
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CCZ-equivalence

F:Fq —Fqand G :Fy; — F, are extended affine equivalent if

Fe={(x,F(x)) | xeFq} = (CAA_ll g) {(x,G(x)) | xeFq},

F:Fq—TFqand G :F; — Fy are CCZ-equivalent if
Me={ (. F(0) [ x €Fg} = A(Te) = {A(x, G(x)) | x €Fy} .
where A is an affine permutation, A(x) = £(x) + c.

\

* EA-equivalence and CCZ-equivalence preserve differential and linear properties,
dc(a,b) = 6r(L7%(a,b)) and We(a,B) = (~1)“IWe(LT(a, 5))

* EA-equivalence preserves the degree BUT CCZ-equivalence does not!

= Can we get CCZ-equivalence from EA-equivalence?
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Preliminaries

Emerging uses in symmetric cryptography
CCZ-equivalence

Using isomorphisms F5 ~ F5 x F5~" and F5' ~ F5 x Fy'~":

Definition

F:FyxFy " —=TFyxFy " and G:Fy x F3~" — Fj x F)'~" are t-twist-equivalent if T, is a
permutation for all y and

Glu,y) = (TyH(u), Up-sy()) -

X y u y

t bits n —t bits t bits n — t bits
. =il
t-twist T
<

| T v | U
t bits m — t bits t bits m — t bits

u v X v

swap matrix M,
Me = {(x,F(x)) | x € F3} — re = {(x,6(x)) | xeF3}

13/36 Clémence Bouvier Anemoi



Preliminaries 5 5 -
Emerging uses in symmetric cryptography

CCZ-equivalence

CCZ = EA + twist

Theorem [Canteaut, Perrin, FFA19]

Let F :F5 — Fy and G : F5 — F5' be two CCZ-equivalent functions. We can obtain G from F
or F from G by composing:
EA transformation + t-twist 4+ EA transformation

Ne = A(l¢),
with A affine permutation.
\
e = (A-M.-B)(T¢),

with M, swap matrix
and A, B EA-mappings.
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CCZ-equivalence

CCZ = EA + twist

Theorem [Canteaut, Perrin, FFA19]

Let F :F5 — Fy and G : F5 — F5' be two CCZ-equivalent functions. We can obtain G from F
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Preliminaries 5 5 :
Emerging uses in symmetric cryptography
CCZ-equivalence

Example: Inverse

Let F : F2n — ]F‘2n'

Mr={(xF(x) |x€F2} and Te={(y,F(y)) |y €F2} = {(F(x).x) [x € Fa}.

()0 () = o= (2 )

X u
n bits n bits
-twist 71
n bits n bits
¥ (n=1) M
F F~1

= F and F~! are CCZ-equivalent and the degree is indeed not preserved.

15/36
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Preliminaries 5 5 :
Emerging uses in symmetric cryptography

CCZ-equivalence

Example: Butterfly [PUB16]

B Bx?

X173 —————— Bx* x3 Bx*

B Bx?
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Preliminaries 5 5 :
Emerging uses in symmetric cryptography

CCZ-equivalence

Example: Butterfly [PUB16]

e e mm e .
1
1
Bx? T B R
. ] R Ll Tk ;
1 1 1
| s : T s (T
1 -|-71 ) 1 : ' 1
1 ! 5 1 1 1
1 y] } 1 ; . !
P . < i : 5 . 5 1 g 1
1 —— —— 1 1
5 _ B | 1] x Bx
- ' X, . n/2-twist s : ' 3
: : = : : : ;
1 3 T i ! q 1 1
: I : : : : :
: T K : FEFEEE
Bx L BB e L
I--—- --------- 1
u % u v X u
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Preliminaries . 5 5
Emerging uses in symmetric cryptography

CCZ-equivalence

Sum up on CCZ-equivalence

Important things to remember!
Let F:Fy — FJ and G : F) — FJ s.t. T = A(lf), with A(x) = L(x) + c.
* F and G have the same differential properties

dc(a,b) = 6r(L7N(a, b)) .
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* F and G have the same linear properties

WG(aaﬂ) = (71)C.(Q’B)WF(‘C’T(OZ7ﬂ)) .

* Verification is the same: if y « F(x), v < G(u)

|y::F(X)? — v== (u)?l

» The degree is not preserved.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Goals and Principles

* Design goals:

>

Compatibility with Various Proof Systems.

* Limited Reliance on Randomness.

*

Different Algorithms for Different Purposes.

*

Design Consistency.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Goals and Principles

* Design goals:

* Compatibility with Various Proof Systems. — RI1CS, Plonk, AIR, ...

* Limited Reliance on Randomness. — fixed MDS matrices

% Different Algorithms for Different Purposes. ~ — hash function # compression function
* Design Consistency. — same structure for all uses

% Qur contributions:

* Link between AO and CCZ-equivalence
* Flystel: a new S-box

* Jive: a new mode

19/36 Clémence Bouvier Anemoi
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Alliance between France and Scotland
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Comparison to previous work

Why Anemoi?

» Auld
Alliance between-France-and-Scotland

«» Athena
Greek goddess, protector of Athens
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New S-box: Flystel
New Mode: Jive
Comparison to previous work

Why Anemoi?

«~ Athena

+ Anemoi
Greek gods of winds
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

The Flystel

Butterfly 4+ Feistel = Flystel

A 3-round Feistel-network with
Q:Fq—Fq and Q' : Fq, — F, two quadratic functions, and E : F, — Fq a permutation

X y y v

L 5
High-degree B Q Low-degree o
permutation function

E'—H Q E Q
) Ql i i
u % X u
Open Flystel H. Closed Flystel V.
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New S-box: Flystel
New Mode: Jive
Comparison to previous work

The Flystel

M= {( (o y), H((y)) ) € F3}
= A{( (v.»), V((v,y)) ,y) €F3})
=A(v)
X y y v
J( /=
High-degree Be——m Q Low-degree o
permutation function
E1——8 Q E Q’
| Ql = =
u v X u
Open Flystel H. Closed Flystel V.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Advantage of CCZ-equivalence

* High Degree Evaluation.

X y y v
High-degree %< Q Low-degree =
permutation function
) QI i i
u v X u
Open Flystel H. Closed Flystel V.
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New S-box: Flystel
New Mode: Jive
Comparison to previous work

Advantage of CCZ-equivalence

* High Degree Evaluation. | (u, V) — 'H(X.y) = (X, u) — V(y. V) |

* Low Cost Verification.

X y y v
High-degree %< Q Low-degree =
permutation function
El—B Q E Q
) QI | |
u v X u
Open Flystel H. Closed Flystel V.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Flystel in [

Fon X Fon — TFon X [Fon Fon X Fon  — [Fon X Fon

p 3.
I O A (A R SRR UL NS SNVIY MG A SN
v+ (x+ By =) (v +v)* 4+ BV +9)
X y y v
v+ Bx°
x/3 v + Bx° x3 5+ Bx°
5+ Bx3
u v x u
Open Flystels. Closed Flystels,.
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New S-box: Flystel
New Mode: Jive
Comparison to previous work

X y
First introduced by [Perrin et al. 2016].
3
v + Ax Well-studied butterfly.
X1/3 Theorems in [Li et al. 2018] state that
if B #0:
* Differential properties
———— N
* Flystely: 0y = 0y =4
3 % Linear properties
* Flystelg: Wy = W), = 2271 2"
5+ Bx°
* Algebraic degree
u v * Open Flystel,: deg,, = n

% Closed Flystely: degy, = 2
Degenerated Butterfly.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Flystel in F,

Fpx Fp = EpxFp FpxFp —FpxTFp

2 / 8,2 _ \1/a)2
e dGoy) o (xom B 1y LT (Gt

y = (x=By2 =)V . (v=y)" +Bv2+9) .
i y y v
= Y + Bx> =
usually
Xl/a = a=3orb. y +,BX2 X o+ sz
|ua) (5 + ,3X2 H H
u v X u
Open Flystelp. Closed Flystelp.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Properties of Flystel in FF,

* Differential properties
Flystel, has a differential uniformity equals to o — 1.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Properties of Flystel in FF,

* Differential properties
Flystel, has a differential uniformity equals to o — 1.

(a) when p =11 and a = 3. (b) when p =13 and o = 5. (c) when p =17 and a = 3.
DDT of Flystel,.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Properties of Flystel in FF,

% Linear properties

W < plogp?

—&- plogp 1,0
2007 4 alpha=3 b
a alpha=5 ’/’
1751 & alpha=7 /’
4 alpha=11 A
- pha= e R
= 150 1 4 alpha=13 e A
4 alpha=17 PPN N
21254 4 apha=19 . $
E A alpha=23 ‘/’ g :
El 4 & alpha=29 L
g w0 #i 1 N &
% P
2 754 £ ‘2 .
Lo
50 "f & -
,,’; £ a
254 f’t
10 20 30 40 50
P

Conjecture for the linearity.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Properties of Flystel in FF,

% Linear properties
W < plogp?

(a) when p =11 and o = 3. (b) when p =13 and oo = 5. (c) when p =17 and o = 3.
LAT of Flystel,.



New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

The SPN Structure

The internal state of Anemoi and its basic operations.

X Xo X1 Xp—1

M

Y Yo n Ye—1

My

(a) Internal state (b) The diffusion layer M.

T T X ¢
H | H H +=
L4 1 Yi D

(c) The S-box layer S. (d) The constant addition A.
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Anemoi

Comparison to previous work

The SPN Structure

r r
Q1 %ot %2 -1
x5 — B J] X6+1
x{ 23] X]f:+1
x5 @\ X2r+1
My
r r+1
Xp_o 55| Xp—2
’ r+1
Xp—1 B o1
vy — | yrt
ylf 2] y1r+1
v =] y2r+1
My

" r+1
Yo_o 23] Ye—2
1

Yi_1 )‘r B — Ygtl

df dl df dh_. db
0 1 o dpp Yy

Overview of Anemoi.
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Anemoi

New S-box: Flystel
New Mode: Jive
Comparison to previous work

* Hash function:
* input: arbitrary length
* ouput: fixed length

Zh

'
mg my my , Zy z
— SE— Sa— Sa—— ' — — P—
'
F/ i
a i
Anemoi Anemoi Anemoi : Anemoi Anemoi
'
'
— I —
Ly o
Fg |
'
(SR — N N ! L _ N
:
Absorption Squeezing

Clémence Bouvier
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

* Hash function: * Compression function:

* input: fixed length
* output: length 1

* input: arbitrary length
* ouput: fixed length

Dedicated mode = 2 words in 1

(y)—=x+y+utv.

o y —
X — — w L L
P
i T 1
u v
0 — — / =
Jives(x,y)
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Comparison for R1CS

SNARK performances using R1CS representation:

~ number of multiplications

m Rescue’ POSEIDON GRIFFIN Anemoi m Rescue’ POSEIDON GRIFFIN Anemoi

4 224 232 112 96 4 264 264 110 120

6 216 264 - 120 6 288 315 - 150

8 256 296 176 160 8 384 363 162 200
(a) when a = 3. (b) when o = 5.

RI1CS constraints for Rescue—Prime, POSEIDON, GRIFFIN and Anemoi,
s = 128, and prime field of 256 bits.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Comparison for Plonk

SNARK performances using Plonk representation:

~ multiplications gates + addition gates

m Rescue’ POSEIDON GRIFFIN Anemoi m Rescue’ POSEIDON GRIFFIN Anemoi

4 560 1336 334 216 4 528 1032 287 240

6 756 3024 - 330 6 768 2265 - 360

8 1152 5448 969 520 8 1280 4003 821 560
(a) when a = 3. (b) when o = 5.

Plonk constraints for Rescue—Prime, POSEIDON, GRIFFIN and Anemoi,
s = 128, and prime field of 256 bits.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Comparison for Plonk (with optimizations)

m Constraints m Constraints
2 88 2 82
PoOSEIDON _ PoSEIDON
3 110 3 98
2 236 2 174
Reinforced Concrete —M8MM Reinforced Concrete —M8M
3 378 3 267
AnemoilJive 2 79 AnemoiJive 2 60
(a) With 3 wires. (b) With 4 wires.

Constraints comparison with o =5, s = 128, and prime field sizes of 256, 384.
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New S-box: Flystel
Anemoi New Mode: Jive
Comparison to previous work

Comparison for AIR

STARK performances using AIR representation:
w- T - dmax
Here w = m, dpax = @, and T = R (or RF + [RP/m]).

m Rescue’ POSEIDON GRIFFIN Anemoi m Rescue’ POSEIDON GRIFFIN Anemoi

4 168 348 168 144 4 220 440 220 240

6 162 396 - 180 6 240 540 - 300

8 192 480 264 240 8 320 640 360 400
(a) with a = 3. (b) with a = 5.

AIR constraints for Rescue—Prime, POSEIDON, GRIFFIN and Anemoi,
s = 128, and prime field of 256 bits.
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Conclusions and Future work

Conclusions

* A new family of ZK-friendly hash functions:
= Anemoi efficient accross proof system

+ New observations of fundamental interest:

* Standalone components:

* New S-box: Flystel
* New mode: Jive

* ldentify a link between AO and CCZ-equivalence
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Conclusions and Future work

Conclusions

* A new family of ZK-friendly hash functions:
= Anemoi efficient accross proof system

+ New observations of fundamental interest:

* Standalone components:

* New S-box: Flystel
* New mode: Jive

* ldentify a link between AO and CCZ-equivalence

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!
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Conclusions and Future work

Future work

% On Anemoi:
* pushing further the cryptanalysis.
* explaining linear properties of the Flystel.

* constructing a Flystel with more branches?
= see [BCLP22]

* Extending the study of the algebraic degree of MiMC to
% other permutations x9 for any d.

* SPN constructions.
= see [LAW+22]: can we extend the coefficient grouping strategy to other primitives
than Chaghri?
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Conclusions and Future work

Future work

% On Anemoi:
* pushing further the cryptanalysis.
* explaining linear properties of the Flystel.

* constructing a Flystel with more branches?
= see [BCLP22]

* Extending the study of the algebraic degree of MiMC to
% other permutations x9 for any d.

* SPN constructions.
= see [LAW+22]: can we extend the coefficient grouping strategy to other primitives
than Chaghri?

Thanks for your attention! 5};
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