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Comparison with “usual” case

A new environment

“Usual” case

⋆ Field size:
F2n , with n ≃ 4, 8 (AES: n = 8).

⋆ Operations:
logical gates/CPU instructions

Arithmetization-friendly

⋆ Field size:
Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 64

⋆ Operations:
large finite-field arithmetic

Fp = Z/pZ, with p given by the order of some elliptic curves

Examples: ⋆ Curve BLS12-381 log2 p = 255

p = 5243587517512619047944774050818596583769055250052763

7822603658699938581184513

⋆ Curve BLS12-377 log2 p = 253

p = 8444461749428370424248824938781546531375899335154063

827935233455917409239041

New properties

“Usual” case

y ← E (x)

⋆ Optimized for:
implementation in software/hardware

Arithmetization-friendly

y ← E (x) and y == E (x)

⋆ Optimized for:
integration within advanced protocols
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The block cipher MiMC

⋆ Minimize the number of multiplications in F2n .

⋆ Construction of MiMC3 [Albrecht et al., Asiacrypt16]:

⋆ n-bit blocks (n odd ≈ 129): x ∈ F2n

⋆ n-bit key: k ∈ F2n

⋆ decryption : replacing x3 by x s where
s = (2n+1 − 1)/3

x

k

⊕ x3

k ⊕ c1

⊕ x3 . . .

k ⊕ cr−1

⊕ x3

k

⊕ y
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Algebraic degree - 1st definition

Let f : Fn
2 → F2, there is a unique multivariate polynomial in F2[x1, . . . xn]/

(︀
(x2i + xi )1≤i≤n

)︀
:

f (x1, ..., xn) =
∑︁
u∈Fn

2

aux
u, where au ∈ F2, x

u =
n∏︁

i=1

xuii .

This is the Algebraic Normal Form (ANF) of f .

Definition

Algebraic Degree of f : Fn
2 → F2:

dega(f ) = max
{︀
hw (u) : u ∈ Fn

2, au ̸= 0
}︀
,

If F : Fn
2 → Fm

2 , then
dega(F ) = max{dega(fi ), 1 ≤ i ≤ m} .

where F (x) = (f1(x), . . . fm(x)).
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Algebraic degree - 2nd definition

Let F : Fn
2 → Fn

2. Then using the isomorphism Fn
2 ≃ F2n ,

there is a unique univariate polynomial representation on F2n of degree at most 2n − 1:

F (x) =
2n−1∑︁
i=0

bix
i ; bi ∈ F2n

Definition

Algebraic degree of F : F2n → F2n :

dega(F ) = max{hw (i) , 0 ≤ i < 2n, and bi ̸= 0}

Example: degu(x ↦→ x3) = 3 dega(x ↦→ x3) = 2

If F : Fn
2 → Fn

2 is a permutation, then

dega(F ) ≤ n − 1
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Integral attack

Exploiting a low algebraic degree

For any affine subspace 𝒱 ⊂ Fn
2 with dim𝒱 ≥ dega(F ) + 1, we have a 0-sum distinguisher:⨁︁

x∈𝒱
F (x) = 0.

Random permutation: degree = n − 1

𝜅 E

x
n bits

y

n bits

Block cipher

P

x
n bits

y

n bits

Random permutation

E
P

2k 2n

?
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First Plateau

Round i of MiMC3: x ↦→ (x + ci−1)
3.

For r rounds:
⋆ Upper bound [Eichlseder et al., Asiacrypt20]: ⌈r log2 3⌉ .
⋆ Aim: determine B r

3 := maxc deg
aMIMC3,c [r ] .

⋆ Round 1:

𝒫1(x) = x3, (c0 = 0)

3 = [11]2

⋆ Round 2:

𝒫2(x) = x9 + c1x
6 + c21x

3 + c31

9 = [1001]2 6 = [110]2 3 = [11]2

Definition

There is a plateau whenever B r
3 = B r−1

3 .

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Degree

Rounds

Algebraic degree observed for n = 31.
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Exact degree
Integral attacks

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

ℰr = {3j mod (2n − 1) where j⪯i , i ∈ ℰr−1}

Example:
𝒫1(x) = x3 ⇒ ℰ1 = {3} .

3 = [11]2
⪰−→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[00]2 = 0

×3−→ 0

[01]2 = 1
×3−→ 3

[10]2 = 2
×3−→ 6

[11]2 = 3
×3−→ 9

ℰ2 = {0, 3, 6, 9} ,

𝒫2(x) = x9 + c1x
6 + c21x

3 + c31 .
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Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

Exact degree
Integral attacks

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

ℰr = {3j mod (2n − 1) where j⪯i , i ∈ ℰr−1}

No exponent ≡ 5, 7 mod 8 ⇒ No exponent 22k − 1

ℰr ⊆ { 0 3 6 9 12 ��ZZ15 18 ��ZZ21
24 27 30 33 36 ��ZZ39 42 ��ZZ45
48 51 54 57 60 ��ZZ63 66 ��ZZ69

. . . 3r}

Example: 63 = 22×3 − 1 ̸∈ ℰ4 = {0, 3, . . . , 81} ⇒ B4
3 < 6 = wt(63)

∀e ∈ ℰ4∖{63},wt(e) ≤ 4 ⇒ B4
3 ≤ 4

11 / 44 Clémence Bouvier Design and Cryptanalysis of AOP



Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

Exact degree
Integral attacks

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

B r
3 ≤ 2× ⌈⌊log2(3r )⌋/2− 1⌉

And a lower bound
if 3r < 2n − 1:

B r
3 ≥ max{wt(3i ), i ≤ r}
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Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

Exact degree
Integral attacks

Exact degree

Maximum-weight exponents:

Let kr = ⌊log2 3r⌋.

∀r ∈ {4, . . . , 16265}∖ℱ with ℱ = {465, 571, . . .}:

⋆ if kr = 1 mod 2,

𝜔r = 2kr − 5 ∈ ℰr ,

⋆ if kr = 0 mod 2,

𝜔r = 2kr − 7 ∈ ℰr .

Example:

123 = 27 − 5 = 2k5 − 5 ∈ ℰ5,
4089 = 212 − 7 = 2k8 − 7 ∈ ℰ8.

Constructing exponents.

∃ ℓ s.t. 𝜔r−ℓ ∈ ℰr−ℓ ⇒ 𝜔r ∈ ℰr
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Covered rounds

Idea of the proof:

⋆ inductive proof: existence of “good” ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

0 19 247 12 53 359106 159 212 265 318 412 465

466 665518 624571 718571 718 771 824 16225 16265

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

Legend: rounds covered by the inductive procedure rounds not covered
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Covered rounds

Idea of the proof:

⋆ inductive proof: existence of “good” ℓ

⋆ MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

0 465

466 571 718 771 824 16225 16265

53 53

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

Legend: rounds covered by the inductive procedure or MILP rounds not covered
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Integral attacks

Plateau

⇒ plateau when kr = ⌊log2 3r⌋ = 1 mod 2 and kr+1 = ⌊log2 3r+1⌋ = 0 mod 2
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If we have a plateau
B r
3 = B r+1

3 ,

Then the next one is
B r+4
3 = B r+5

3 or B r+5
3 = B r+6

3 .
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Algebraic Attacks
Anemoi

Exact degree
Integral attacks

Music in MIMC3

� Patterns in sequence (kr )r>0:

⇒ denominators of semiconvergents of log2(3) ≃ 1.5849625

D = { 1 , 2 , 3, 5, 7 , 12 , 17, 29, 41, 53 , 94, 147, 200, 253, 306, 359 , . . .} ,

log2(3) ≃
a

b
⇔ 2a ≃ 3b

� Music theory:

� perfect octave 2:1

� perfect fifth 3:2 219 ≃ 312 ⇔ 27 ≃
(︂
3

2

)︂12

⇔ 7 octaves ∼ 12 fifths

x

k

⊕ x3

k ⊕ c1

⊕
;
�
�����

x3 . . .

k ⊕ cr−1

⊕
;
�
�����

x3

k

⊕
;
�
�����

y
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Comparison to previous work

First Bound: ⌈r log2 3⌉ ⇒ Exact degree: 2× ⌈⌊r log2 3⌋/2− 1⌉ .
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 bound from [EGL+20]

 exact degree (our result)

For n = 129, MIMC3 = 82 rounds

Rounds Time Data Source

80/82 2128xor 2128 [EGL+20]

81/82 2128xor 2128 New

80/82 2125xor 2125 New

Secret-key distinguishers (n = 129)
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Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

Exact degree
Integral attacks

Take-Away

Algebraic Degree of MiMC

⋆ guarantee on the degree of MIMC3

⋆ upper bound on the algebraic degree

2× ⌈⌊log2(3r )⌋/2− 1⌉ .

⋆ bound tight, up to 16265 rounds

⋆ minimal complexity for higher-order differential attack
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Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

Tricks for SPN
Applied to Poseidon and Rescue–Prime

1 Emerging uses in symmetric cryptography

2 Algebraic Degree of MiMC
Exact degree
Integral attacks

3 Algebraic Attacks
Tricks for SPN
Applied to Poseidon and Rescue–Prime

4 Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive
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Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

Tricks for SPN
Applied to Poseidon and Rescue–Prime

Ethereum Challenges

In Nov. 2021, a Cryptanalysis Challenge for AOP by the Ethereum Foundation.

Feistel–MiMC, Rescue–Prime, Poseidon, Reinforced Concrete

CICO: Constrained Input Constrained Output

Definition

Let P : Ft
q → Ft

q and u < t. The CICO problem is:

Finding X ,Y ∈ Ft−u
q s.t. P(X , 0u) = (Y , 0u).

x0 x1 0

y0 y1 0

P

when t = 3, u = 1.

Solving Systems:

⋆ Univariate systems: Find the roots of a polynomial P ∈ Fq[X ]: ̃︀𝒪(d), d = deg(P)

⋆ Multivariate systems: Compute a Gröbner basis from polynomial equations in
Fq[X1, . . . ,Xn]: Pj,j=1,...,n(X1, . . .Xn) = 0: ̃︀𝒪(d3)

⇒ build univariate systems when possible!
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Trick for SPN

Let P = P0 ∘ P1 be a permutation of F3
p and suppose

∃ V ,G ∈ F3
p, s.t. ∀ X ∈ Fp, P−1

0 (XV + G ) = (*, *, 0) .

x0 x1 0

y0 y1 0

P

P
ol
.
sy
st
em

R rounds

x0 x1 0

XV + G

y0 y1 0

P0

P1

P
ol
.
sy
st
em

P
r
=

1

2 rounds

R − 2 rounds

Approach used against Poseidon and Rescue–Prime
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Poseidon

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy
and M. Schofnegger, USENIX 2021

⋆ SPN construction:

⋆ S-Box layer: x ↦→ x𝛼, (𝛼 = 3)

⋆ Linear layer: MDS

⋆ Round constants addition: AddC

⋆ Number of rounds (for challenges):

R = 2× Rf + RP

= 8 + (from 3 to 24) .

AddC

x𝛼 x𝛼 x𝛼

MDS
...

...
...

Rf rounds

AddC

x𝛼

MDS
...

...
...

RP rounds

AddC

x𝛼 x𝛼 x𝛼

MDS

Rf rounds
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Poseidon{︃
V = (A3,B3, 0) ,

G = (0, 0, g) ,

with⎧⎨⎩B = −𝛼0,2

𝛼1,2
A

g =
(︁

1
𝛼2,2

(︀
𝛼0,2c

1
0 + 𝛼1,2c

1
1

)︀
+ c12 + (c02 )

3
)︁3

.

R
Designers Ethereum

d complexity
claims estimations

8 + 3 217 245 39 226

8 + 8 225 253 314 235

8 + 13 233 261 319 244

8 + 19 242 269 325 254

8 + 24 250 277 330 262

Complexity of our attack against Poseidon.

?
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?

c01�

0

c02�

x3 x3 x3

? ? (c02 )
3

M

AX1/3 − c10 BX1/3 − c11 g1/3 − c12

c10 c11 c12� � �

x3 x3 x3

A3X B3X g
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Applied to Poseidon and Rescue–Prime

Rescue–Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A.
Szepieniec, ToSC 2020

⋆ SPN construction:

⋆ S-Box layer: x ↦→ x𝛼 and x ↦→ x1/𝛼, (𝛼 = 3)

⋆ Linear layer: MDS

⋆ Round constants addition: AddC

⋆ Number of rounds (for challenges):

R = from 4 to 8

(2 S-boxes per round).

...
...

...

x𝛼 x𝛼 x𝛼

AddC

MDS

x1/𝛼 x1/𝛼 x1/𝛼

AddC

MDS

...
...

...

Example of parameters

p = 18446744073709551557

≃ 264

𝛼 = 3

𝛼−1= 12297829382473034371

...
...

...

x𝛼 x𝛼 x𝛼

AddC

MDS

x1/𝛼 x1/𝛼 x1/𝛼

AddC

MDS

...
...

...

Pi

Qi
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Applied to Poseidon and Rescue–Prime

Rescue–Prime{︃
V = (A3,B3, 0) ,

G = (0, 0, g) ,

with⎧⎨⎩B = −𝛼0,2

𝛼1,2
A

g =
(︁

1
𝛼2,2

(︀
𝛼0,2c

0
0 + 𝛼1,2c

0
1

)︀
+ c02

)︁1/3

.

R m
Designers Ethereum

d complexity
claims estimations

4 3 236 237.5 39 243

6 2 240 237.5 311 253

7 2 248 243.5 313 262

5 3 248 245 312 257

8 2 256 249.5 315 272

Complexity of our attack against Rescue.

?
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Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

Tricks for SPN
Applied to Poseidon and Rescue–Prime

Take-Away

Algebraic Attacks against some AOP

⋆ consider as many variants of encoding as possible

⋆ build univariate instead of multivariate systems

⋆ start (and end) with a linear layer

⋆ 2 rounds can be skipped with the trick
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Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive

1 Emerging uses in symmetric cryptography

2 Algebraic Degree of MiMC
Exact degree
Integral attacks

3 Algebraic Attacks
Tricks for SPN
Applied to Poseidon and Rescue–Prime

4 Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive
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Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive

Why Anemoi?

⋆ Anemoi
Family of ZK-friendly Hash functions

⇓

⋆ Anemoi
Greek gods of winds
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Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

y ← E (x) ; E : low degree y == E (x) ; E : low degree

⇒ vulnerability to some attacks?

New approach:
using CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is CCZ-equivalent to a function that can be verified
efficiently.

y ← F (x) ; F : high degree v == G (u) ; G : low degree
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Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

F : Fq → Fq and G : Fq → Fq are CCZ-equivalent if

ΓF =
{︀
(x ,F (x)) | x ∈ Fq

}︀
= 𝒜(ΓG ) =

{︀
𝒜 (x ,G (x)) | x ∈ Fq

}︀
,

where 𝒜 is an affine permutation, 𝒜(x) = ℒ(x) + c .

⋆ F and G have the same differential properties: 𝛿F = 𝛿G .

⋆ F and G have the same linear properties: 𝒲F = 𝒲G .

⋆

⋆ The degree is not preserved.
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Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive

The Flystel

Butterfly + Feistel ⇒ Flystel

A 3-round Feistel-network with
Q𝛾 : Fq → Fq and Q𝛿 : Fq → Fq two quadratic functions, and E : Fq → Fq a permutation

High-degree
permutation

x y

�

�

�

u v

Q𝛾

E−1

Q𝛿

Open Flystel ℋ.

Low-degree
function

y v

�

� �

x u

Q𝛾 E Q𝛿

Closed Flystel 𝒱.
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The Flystel

Γℋ =
{︀
( (x , y), ℋ((x , y)) ) | (x , y) ∈ F2

q

}︀
= 𝒜

(︀{︀
( (v , y), 𝒱((v , y)) ) | (v , y) ∈ F2

q

}︀)︀
= 𝒜(Γ𝒱)
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Advantage of CCZ-equivalence

⋆ High Degree Evaluation.
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x y

�
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Advantage of CCZ-equivalence

⋆ High Degree Evaluation.

⋆ Low Cost Verification.

(u, v) == ℋ(x , y)⇔ (x , u) == 𝒱(y , v)

High-degree
permutation

x y

�

�

�

u v
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CCZ-equivalence
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Flystel in F2n

ℋ :

⎧⎪⎪⎨⎪⎪⎩
F2n × F2n → F2n × F2n

(x , y) ↦→
(︁
x + 𝛽y3 + 𝛾 + 𝛽

(︀
y + (x + 𝛽y3 + 𝛾)1/3

)︀3
+ 𝛿 ,

y + (x + 𝛽y3 − 𝛾)1/3
)︁
.

x y

⊕

⊕

⊕

u v

𝛾 + 𝛽x3

x1/3

𝛿 + 𝛽x3

Open Flystel2.

𝒱 :

⎧⎪⎨⎪⎩
F2n × F2n → F2n × F2n

(x , y) ↦→
(︀
(y + v)3 + 𝛽y3 + 𝛾 ,

(y + v)3 + 𝛽v3 + 𝛿
)︀
,

y v

⊕

⊕ ⊕

x u

𝛾 + 𝛽x3
x3 𝛿 + 𝛽x3

Closed Flystel2.

33 / 44 Clémence Bouvier Design and Cryptanalysis of AOP



Emerging uses in symmetric cryptography
Algebraic Degree of MiMC

Algebraic Attacks
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CCZ-equivalence
New S-box: Flystel
New mode: Jive

Properties of Flystel in F2n

x y

⊕

⊕

⊕

⊕

u v

𝛾 + 𝛽x3

x1/3

x3

𝛿 + 𝛽x3

Degenerated Butterfly.

First introduced by [Perrin et al. 2016].

Well-studied butterfly.

Theorems in [Li et al. 2018] state that
if 𝛽 ̸= 0:

⋆ Differential properties

⋆ Flystel2: 𝛿ℋ = 𝛿𝒱 = 4

⋆ Linear properties

⋆ Flystel2: 𝒲ℋ =𝒲𝒱 = 2n+1

⋆ Algebraic degree

⋆ Open Flystel2: degℋ = n
⋆ Closed Flystel2: deg𝒱 = 2
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Flystel in Fp

ℋ :

⎧⎪⎪⎨⎪⎪⎩
Fp × Fp → Fp × Fp

(x , y) ↦→
(︁
x − 𝛽y2 − 𝛾 + 𝛽

(︀
y − (x − 𝛽y2 − 𝛾)1/𝛼

)︀2
+ 𝛿 ,

y − (x − 𝛽y2 − 𝛾)1/𝛼
)︁
.

x y

�

�

�

u v

𝛾 + 𝛽x2

x1/𝛼

𝛿 + 𝛽x2

Open Flystelp.

usually
𝛼 = 3 or 5.

𝒱 :

⎧⎪⎨⎪⎩
Fp × Fp → Fp × Fp

(y , v) ↦→
(︀
(y − v)𝛼 + 𝛽y2 + 𝛾 ,

(v − y)𝛼 + 𝛽v2 + 𝛿
)︀
.

y v

�

� �

x u

𝛾 + 𝛽x2 x𝛼 𝛿 + 𝛽x2

Closed Flystelp.
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Algebraic Degree of MiMC

Algebraic Attacks
Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive

Properties of Flystel in Fp

⋆ Differential properties
Flystelp has a differential uniformity equals to 𝛼− 1.

(a) when p = 11 and 𝛼 = 3. (b) when p = 13 and 𝛼 = 5. (c) when p = 17 and 𝛼 = 3.

DDT of Flystelp.
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Algebraic Attacks
Anemoi

CCZ-equivalence
New S-box: Flystel
New mode: Jive

Properties of Flystel in Fp

⋆ Linear properties
𝒲 ≤ p log p ?

(a) For different 𝛼. (b) For the smallest 𝛼.

Conjecture for the linearity.

(a) when p = 11 and 𝛼 = 3. (b) when p = 13 and 𝛼 = 5. (c) when p = 17 and 𝛼 = 3.

LAT of Flystelp.
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The SPN Structure

The internal state of Anemoi and its basic operations.

x0 x1 ... xℓ−1

y0 y1 ... yℓ−1

(a) Internal state

ℳx

ℳy =ℳx ∘ 𝜌

(b) The diffusion layer ℳ.

𝒫 𝒫 ... 𝒫

(c) The PHT 𝒫.

ℋ ℋ ... ℋ

(d) The S-box layer 𝒮.

X i

Y i

C i

D i
+=

(e) The constant addition 𝒜.
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yrℓ−1

yrℓ−2

.

.

.

yr2

yr1

yr0

drℓ−1drℓ−2
. . .dr2dr1dr0

�
�

�

�
�

ℳy

xrℓ−1

xrℓ−2

.

.

.

xr2

xr1

xr0

crℓ−1crℓ−2
. . .cr2cr1cr0

�
�

�

�
�

ℳx

�
�

�
�

�
�

�
�

�
�

ℋ

ℋ

ℋ

ℋ

ℋ

xr+1
ℓ−1

xr+1
ℓ−2

.

.

.

xr+1
2

xr+1
1

xr+1
0

yr+1
ℓ−1

yr+1
ℓ−2

.

.

.

yr+1
2

yr+1
1

yr+1
0

.

.

.
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Number of rounds

Anemoiq,𝛼,ℓ = ℳ∘ Rnr−1 ∘ ... ∘ R0

⇒ Choosing the number of rounds:

nr ≥ max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩8 , min(5, 1 + ℓ)⏟  ⏞  
security margin

+ 2 +min

{︃
r ∈ N

⃒⃒⃒⃒
⃒
(︂
4ℓr + 𝜅𝛼

2ℓr

)︂2

≥ 2s

}︃
⏟  ⏞  

to prevent algebraic attacks

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

𝛼 (𝜅𝛼) 3 (1) 5 (2) 7 (4) 11 (9)

ℓ = 1 21 21 20 19

ℓ = 2 14 14 13 13

ℓ = 3 12 12 12 11

ℓ = 4 12 12 11 11

Number of Rounds of Anemoi (s = 128).
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New Mode: Jive

⋆ Hash function (random oracle):

⋆ input: arbitrary length
⋆ ouput: fixed length

�

m0

Fc
q

Fr
q

Anemoi

�

m1

Anemoi

�

m2

Anemoi

. . .

. . .

z0

Anemoi

. . .

. . .

z1

Anemoi

zh

Absorption Squeezing

Dedicated mode ⇒ b words in 1

Jiveb(P) :

⎧⎪⎨⎪⎩
(Fm

q )
b → Fm

q

(x0, ..., xb−1) ↦→
b−1∑︁
i=0

(xi + Pi (x0, ..., xb−1)) .

x0 x1 . . . xb−1

Jiveb(x0, ..., xb−1)

P

�

�

�
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New Mode: Jive

⋆ Hash function (random oracle):

⋆ input: arbitrary length
⋆ ouput: fixed length

⋆ Compression function (Merkle-tree):

⋆ input: fixed length
⋆ output: (input length) /2

Dedicated mode ⇒ 2 words in 1

(x , y) ↦→ x + y + u + v .

x

y

0

w

/

/

P

x y

Jive2(x , y)

P

u v
�

�
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Some Benchmarks

m RP Poseidon Griffin Anemoi

R1CS

2 208 198 - 76
4 224 232 112 96
6 216 264 - 120
8 256 296 176 160

Plonk

2 312 380 - 189
4 560 1336 260 308
6 756 3024 - 444
8 1152 5448 574 624

AIR

2 156 300 - 126
4 168 348 168 168
6 162 396 - 216
8 192 480 264 288

(a) when 𝛼 = 3

m RP Poseidon Griffin Anemoi

R1CS

2 240 216 - 95
4 264 264 110 120
6 288 315 - 150
8 384 363 162 200

Plonk

2 320 344 - 210
4 528 1032 222 336
6 768 2265 - 480
8 1280 4003 492 672

AIR

2 200 360 - 210
4 220 440 220 280
6 240 540 - 360
8 320 640 360 480

(b) when 𝛼 = 5

Constraint comparison for Rescue–Prime, Poseidon, Griffin and Anemoi (s = 128)

for standard arithmetization, without optimization.
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Take-Away

Anemoi

⋆ A new family of ZK-friendly hash functions

⋆ Contributions of fundamental interest:

⋆ New S-box: Flystel

⋆ New mode: Jive

⋆ Identify a link between AO and CCZ-equivalence
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Conclusions

⋆ A better understanding of the algebraic degree of MIMC3

+ More details on doi.org/10.1007/s10623-022-01136-x (or eprint.iacr.org/2022/366)

⋆ Practical attacks against AO hash functions

+ More details on doi.org/10.46586/tosc.v2022.i3.73-101

⋆ Anemoi: a new family of ZK-friendly hash functions

+ More details on eprint.iacr.org/2022/840

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thanks for your attention!
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