Design and Cryptanalysis of Arithmetization-Oriented Primitives.

Clémence Bouvier ${ }^{1,2}$

including joint works with Augustan Bariant ${ }^{2}$, Pierre Briaud ${ }^{1,2}$, Anne Canteaut ${ }^{2}$, Paros Chaidos ${ }^{3}$, Gaëtan Leurent ${ }^{2}$, Leo Perrin ${ }^{2}$, Robin Salen ${ }^{4}$, Vesselin Velichkov ${ }^{5,6}$ and Danny Willems ${ }^{7,8}$
${ }^{1}$ Sorbonne Université, $\quad{ }^{2}$ India Paris,
${ }^{3}$ National \& Kapodistrian University of Athens, $\quad{ }^{4}$ Toposware Inc., Boston,
${ }^{5}$ University of Edinburgh, $\quad{ }^{6}$ Clearmatics, London, ${ }^{7}$ Nomadic Labs, Paris, ${ }^{8}$ In ria and LIX, CNRS
May, 2023 National and Kapodistrian
University of Athens

\bullet
toposware
nomadic labs

Motivation

Primitives need to be analysed.

Motivation

Primitives need to be analysed.

Motivation

Primitives need to be analysed.

Content

Design and Cryptanalysis of Arithmetization-Oriented Primitives.

(1) Emerging uses in symmetric cryptography
(2) Algebraic Degree of MiMC

- Exact degree
- Integral attacks
(3) Algebraic Attacks
- Tricks for SPN
- Applied to Poseidon and Rescue-Prime
(4) Anemoi
- CCZ-equivalence
- New S-box: Flystel
- New mode: Jive

Comparison with "usual" case

A new environment

"Usual" case

* Field size:
$\mathbb{F}_{2^{n}}$, with $n \simeq 4,8(\mathrm{AES}: n=8)$.
* Operations:
logical gates/CPU instructions

Arithmetization-friendly

\star Field size:
\mathbb{F}_{q}, with $q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64$

* Operations:
large finite-field arithmetic

Comparison with "usual" case

A new environment

"Usual" case

* Field size:
$\mathbb{F}_{2^{n}}$, with $n \simeq 4,8(A E S: n=8)$.
* Operations:
logical gates/CPU instructions

Arithmetization-friendly

\star Field size:
\mathbb{F}_{q}, with $q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64$

* Operations:
large finite-field arithmetic
$\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, with p given by the order of some elliptic curves
Examples:
* Curve BLS12-381
$\log _{2} p=255$
$p=5243587517512619047944774050818596583769055250052763$ 7822603658699938581184513

$$
\begin{aligned}
& \star \text { Curve BLS12-377 } \quad \log _{2} p=253 \\
& \qquad p=8444461749428370424248824938781546531375899335154063 \\
& 827935233455917409239041
\end{aligned}
$$

Comparison with "usual" case

A new environment

"Usual" case

\star Field size:
$\mathbb{F}_{2^{n}}$, with $n \simeq 4,8$ (AES: $n=8$).

* Operations:
logical gates/CPU instructions

Arithmetization-friendly

\star Field size:
\mathbb{F}_{q}, with $q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64$

* Operations:
large finite-field arithmetic

New properties

"Usual" case

$$
y \leftarrow E(x)
$$

* Optimized for: implementation in software/hardware

Arithmetization-friendly

$$
y \leftarrow E(x) \quad \text { and } \quad y==E(x)
$$

\star Optimized for:
integration within advanced protocols

Comparison with "usual" case

(1) Emerging uses in symmetric cryptography
(2) Algebraic Degree of MiMC

- Exact degree
- Integral attacks
- Tricks for SPN
- Applied to Poseidon and Rescue-PrimeAnemoi
- CCZ-equivalence
- New S-box: Flystel
- New mode: Jive

The block cipher MiMC

* Minimize the number of multiplications in $\mathbb{F}_{2^{n}}$.
* Construction of MiMC_{3} [Albrecht et al., Asiacrypt16]:
$\star n$-bit blocks (n odd ≈ 129): $x \in \mathbb{F}_{2^{n}}$
* n-bit key: $k \in \mathbb{F}_{2^{n}}$
\star decryption : replacing x^{3} by x^{5} where

$$
s=\left(2^{n+1}-1\right) / 3
$$

$$
\stackrel{{ }^{\downarrow}}{\stackrel{k}{\downarrow}} \underset{\oplus}{\oplus} \rightarrow x^{3} \rightarrow \stackrel{\downarrow}{\oplus} \rightarrow{x^{3}}^{\downarrow} \rightarrow \cdots \rightarrow \stackrel{\downarrow \oplus c_{r-1}}{\downarrow} \rightarrow x^{3} \rightarrow \stackrel{x^{2}}{\oplus} \rightarrow y
$$

The block cipher MiMC

* Minimize the number of multiplications in $\mathbb{F}_{2^{n}}$.

$$
R:=\left\lceil n \log _{3} 2\right\rceil .
$$

* Construction of MiMC_{3} [Albrecht et al., Asiacrypt16]:
$\star n$-bit blocks (n odd ≈ 129): $x \in \mathbb{F}_{2^{n}}$
$\star n$-bit key: $k \in \mathbb{F}_{2^{n}}$
\star decryption : replacing x^{3} by x^{5} where $s=\left(2^{n+1}-1\right) / 3$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

The block cipher MiMC

* Minimize the number of multiplications in $\mathbb{F}_{2^{n}}$.

$$
R:=\left\lceil n \log _{3} 2\right\rceil .
$$

* Construction of MiMC_{3} [Albrecht et al., Asiacrypt16]:
$\star n$-bit blocks (n odd ≈ 129): $x \in \mathbb{F}_{2^{n}}$
* n-bit key: $k \in \mathbb{F}_{2^{n}}$
\star decryption : replacing x^{3} by x^{5} where $s=\left(2^{n+1}-1\right) / 3$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

Algebraic degree - 1st definition

Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, there is a unique multivariate polynomial in $\mathbb{F}_{2}\left[x_{1}, \ldots x_{n}\right] /\left(\left(x_{i}^{2}+x_{i}\right)_{1 \leq i \leq n}\right)$:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u}, \text { where } a_{u} \in \mathbb{F}_{2}, x^{u}=\prod_{i=1}^{n} x_{i}^{u_{i}}
$$

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic Degree of $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$:

$$
\operatorname{deg}^{a}(f)=\max \left\{\operatorname{hw}(u): u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0\right\},
$$

Algebraic degree - 1st definition

Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, there is a unique multivariate polynomial in $\mathbb{F}_{2}\left[x_{1}, \ldots x_{n}\right] /\left(\left(x_{i}^{2}+x_{i}\right)_{1 \leq i \leq n}\right)$:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u}, \text { where } a_{u} \in \mathbb{F}_{2}, x^{u}=\prod_{i=1}^{n} x_{i}^{u_{i}}
$$

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic Degree of $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$:

$$
\operatorname{deg}^{a}(f)=\max \left\{\operatorname{hw}(u): u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0\right\},
$$

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, then

$$
\operatorname{deg}^{a}(F)=\max \left\{\operatorname{deg}^{a}\left(f_{i}\right), 1 \leq i \leq m\right\} .
$$

where $F(x)=\left(f_{1}(x), \ldots f_{m}(x)\right)$.

Algebraic degree - 1st definition

Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, there is a unique multivariate polynomial in $\mathbb{F}_{2}\left[x_{1}, \ldots x_{n}\right] /\left(\left(x_{i}^{2}+x_{i}\right)_{1 \leq i \leq n}\right)$:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u}, \text { where } a_{u} \in \mathbb{F}_{2}, x^{u}=\prod_{i=1}^{n} x_{i}^{u_{i}}
$$

This is the Algebraic Normal Form (ANF) of f.
Example:

$$
\begin{aligned}
& F: \mathbb{F}_{2^{11}} \rightarrow \mathbb{F}_{2^{11}}, x \mapsto x^{3} \\
& F: \mathbb{F}_{2}^{11} \rightarrow \mathbb{F}_{2}^{11},\left(x_{0}, \ldots, x_{10}\right) \mapsto \\
& \left(x_{0} x_{10}+x_{0}+x_{1} x_{5}+x_{1} x_{9}+x_{2} x_{7}+x_{2} x_{9}+x_{2} x_{10}+x_{3} x_{4}+x_{3} x_{5}+x_{4} x_{8}+x_{4} x_{9}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{10}+x_{7} x_{8}+x_{9} x_{10},\right. \\
& x_{0} x_{1}+x_{0} x_{6}+x_{2} x_{5}+x_{2} x_{8}+x_{3} x_{6}+x_{3} x_{9}+x_{3} x_{10}+x_{4}+x_{5} x_{8}+x_{5} x_{9}+x_{6} x_{9}+x_{7} x_{8}+x_{7} x_{9}+x_{7}+x_{10} \text {, } \\
& x_{0} x_{1}+x_{0} x_{2}+x_{0} x_{10}+x_{1} x_{5}+x_{1} x_{6}+x_{1} x_{9}+x_{2} x_{7}+x_{3} x_{4}+x_{3} x_{7}+x_{4} x_{5}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{8}+x_{6} x_{9}+x_{7} x_{10}+x_{8}+x_{9} x_{10}, \\
& x_{0} x_{3}+x_{0} x_{6}+x_{0} x_{7}+x_{1}+x_{2} x_{5}+x_{2} x_{6}+x_{2} x_{8}+x_{2} x_{10}+x_{3} x_{6}+x_{3} x_{8}+x_{3} x_{9}+x_{4} x_{5}+x_{4} x_{6}+x_{4}+x_{5} x_{8}+x_{5} x_{10}+x_{6} x_{9}+x_{7} x_{9}+x_{7}+x_{8} x_{9}+x_{10}, \\
& x_{0} x_{2}+x_{0} x_{4}+x_{1} x_{2}+x_{1} x_{6}+x_{1} x_{7}+x_{2} x_{9}+x_{2} x_{10}+x_{3} x_{5}+x_{3} x_{6}+x_{3} x_{7}+x_{3} x_{9}+x_{4} x_{5}+x_{4} x_{7}+x_{4} x_{9}+x_{5}+x_{6} x_{8}+x_{7} x_{8}+x_{8} x_{9}+x_{8} x_{10}, \\
& x_{0} x_{5}+x_{0} x_{7}+x_{0} x_{8}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{6}+x_{2} x_{7}+x_{2} x_{10}+x_{3} x_{8}+x_{4} x_{5}+x_{4} x_{8}+x_{5} x_{6}+x_{5} x_{9}+x_{7} x_{8}+x_{7} x_{9}+x_{7} x_{10}+x_{9}, \\
& x_{0} x_{3}+x_{0} x_{6}+x_{1} x_{4}+x_{1} x_{7}+x_{1} x_{8}+x_{2}+x_{3} x_{6}+x_{3} x_{7}+x_{3} x_{9}+x_{4} x_{7}+x_{4} x_{9}+x_{4} x_{10}+x_{5} x_{6}+x_{5} x_{7}+x_{5}+x_{6} x_{9}+x_{7} x_{10}+x_{8} x_{10}+x_{8}+x_{9} x_{10}, \\
& x_{0} x_{7}+x_{0} x_{8}+x_{0} x_{9}+x_{1} x_{3}+x_{1} x_{5}+x_{2} x_{3}+x_{2} x_{7}+x_{2} x_{8}+x_{3} x_{10}+x_{4} x_{6}+x_{4} x_{7}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{6}+x_{5} x_{8}+x_{5} x_{10}+x_{6}+x_{7} x_{9}+x_{8} x_{9}+x_{9} x_{10} \\
& x_{0} x_{4}+x_{0} x_{8}+x_{1} x_{6}+x_{1} x_{8}+x_{1} x_{9}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{7}+x_{3} x_{8}+x_{4} x_{9}+x_{5} x_{6}+x_{5} x_{9}+x_{6} x_{7}+x_{6} x_{10}+x_{8} x_{9}+x_{8} x_{10}+x_{10}, \\
& x_{0} x_{10}+x_{1} x_{4}+x_{1} x_{7}+x_{2} x_{5}+x_{2} x_{8}+x_{2} x_{9}+x_{3}+x_{4} x_{7}+x_{4} x_{8}+x_{4} x_{10}+x_{5} x_{8}+x_{5} x_{10}+x_{6} x_{7}+x_{6} x_{8}+x_{6}+x_{7} x_{10}+x_{9}, \\
& \left.x_{0} x_{5}+x_{0} x_{10}+x_{1} x_{8}+x_{1} x_{9}+x_{1} x_{10}+x_{2} x_{4}+x_{2} x_{6}+x_{3} x_{4}+x_{3} x_{8}+x_{3} x_{9}+x_{5} x_{7}+x_{5} x_{8}+x_{5} x_{9}+x_{6} x_{7}+x_{6} x_{9}+x_{7}+x_{8} x_{10}+x_{9} x_{10}\right)
\end{aligned}
$$

Algebraic degree - 2nd definition

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$. Then using the isomorphism $\mathbb{F}_{2}^{n} \simeq \mathbb{F}_{2^{n}}$, there is a unique univariate polynomial representation on $\mathbb{F}_{2^{n}}$ of degree at most $2^{n}-1$:

$$
F(x)=\sum_{i=0}^{2^{n}-1} b_{i} x^{i} ; b_{i} \in \mathbb{F}_{2^{n}}
$$

Definition

Algebraic degree of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
\operatorname{deg}^{a}(F)=\max \left\{\operatorname{hw}(i), 0 \leq i<2^{n}, \text { and } b_{i} \neq 0\right\}
$$

$$
\text { Example: } \quad \operatorname{deg}^{u}\left(x \mapsto x^{3}\right)=3 \quad \operatorname{deg}^{a}\left(x \mapsto x^{3}\right)=2
$$

Algebraic degree - 2nd definition

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$. Then using the isomorphism $\mathbb{F}_{2}^{n} \simeq \mathbb{F}_{2^{n}}$, there is a unique univariate polynomial representation on $\mathbb{F}_{2^{n}}$ of degree at most $2^{n}-1$:

$$
F(x)=\sum_{i=0}^{2^{n}-1} b_{i} x^{i} ; b_{i} \in \mathbb{F}_{2^{n}}
$$

Definition

Algebraic degree of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
\operatorname{deg}^{a}(F)=\max \left\{\operatorname{hw}(i), 0 \leq i<2^{n}, \text { and } b_{i} \neq 0\right\}
$$

Example: $\quad \operatorname{deg}^{u}\left(x \mapsto x^{3}\right)=3 \quad \operatorname{deg}^{a}\left(x \mapsto x^{3}\right)=2$
If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is a permutation, then

$$
\operatorname{deg}^{a}(F) \leq n-1
$$

Integral attack

Exploiting a low algebraic degree
For any affine subspace $\mathcal{V} \subset \mathbb{F}_{2}^{n}$ with $\operatorname{dim} \mathcal{V} \geq \operatorname{deg}^{a}(F)+1$, we have a 0 -sum distinguisher:

$$
\bigoplus_{x \in \mathcal{V}} F(x)=0
$$

Random permutation: degree $=n-1$

Integral attack

Exploiting a low algebraic degree
For any affine subspace $\mathcal{V} \subset \mathbb{F}_{2}^{n}$ with $\operatorname{dim} \mathcal{V} \geq \operatorname{deg}^{a}(F)+1$, we have a 0 -sum distinguisher:

$$
\bigoplus_{x \in \mathcal{V}} F(x)=0
$$

Random permutation: degree $=n-1$

Block cipher

Random permutation

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
* Aim: determine

$$
B_{3}^{r}:=\max _{c} \operatorname{deg}^{2} \mathrm{MIMC}_{3, c}[r] .
$$

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
\star Aim: determine $\quad B_{3}^{r}:=\max _{c} \operatorname{deg}^{a} \mathrm{MIMC}_{3, c}[r]$.
* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 3\right\rceil$.
\star Aim: determine $\quad B_{3}^{r}:=\max _{c} \operatorname{deg}^{a} \mathrm{MIMC}_{3, c}[r]$.
* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

* Round 2: $B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 3\right\rceil$.
\star Aim: determine $\quad B_{3}^{r}:=\max _{c} \operatorname{deg}^{a} \mathrm{MIMC}_{3, c}[r]$.
* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

\star Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
* Aim: determine

$$
B_{3}^{r}:=\max _{c} \operatorname{deg}^{a} \mathrm{MIMC}_{3, c}[r] .
$$

Definition

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

There is a plateau whenever $B_{3}^{r}=B_{3}^{r-1}$.
\star Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
* Aim: determine

$$
B_{3}^{r}:=\max _{c} \operatorname{deg}^{2} \mathrm{MIMC}_{3, c}[r] .
$$

Definition

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

\star Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

There is a plateau whenever $B_{3}^{r}=B_{3}^{r-1}$.

Algebraic degree observed for $n=31$.

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
* Aim: determine

$$
B_{3}^{r}:=\max _{c} \operatorname{deg}^{2} \mathrm{MIMC}_{3, c}[r] .
$$

Definition

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

\star Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

There is a plateau whenever $B_{3}^{r}=B_{3}^{r-1}$.

Algebraic degree observed for $n=31$.

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
* Aim: determine

$$
B_{3}^{r}:=\max _{c} \operatorname{deg}^{2} \mathrm{MIMC}_{3, c}[r] .
$$

Definition

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

\star Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

There is a plateau whenever $B_{3}^{r}=B_{3}^{r-1}$.

Algebraic degree observed for $n=31$.

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
* Aim: determine

$$
B_{3}^{r}:=\max _{c} \operatorname{deg}^{2} \mathrm{MIMC}_{3, c}[r] .
$$

Definition

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

\star Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

There is a plateau whenever $B_{3}^{r}=B_{3}^{r-1}$.

Algebraic degree observed for $n=31$.

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
* Aim: determine

$$
B_{3}^{r}:=\max _{c} \operatorname{deg}^{2} \mathrm{MIMC}_{3, c}[r] .
$$

Definition

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

\star Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

There is a plateau whenever $B_{3}^{r}=B_{3}^{r-1}$.

Algebraic degree observed for $n=31$.

First Plateau

Round i of $\mathrm{MiMC}_{3}: x \mapsto\left(x+c_{i-1}\right)^{3}$.
For r rounds:

* Upper bound [Eichlseder et al., Asiacrypt20]: $\left\lceil r \log _{2} 37\right.$.
* Aim: determine

$$
B_{3}^{r}:=\max _{c} \operatorname{deg}^{2} \mathrm{MIMC}_{3, c}[r] .
$$

Definition

* Round 1: $\quad B_{3}^{1}=2$

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3}, \quad\left(c_{0}=0\right) \\
3=[11]_{2}
\end{gathered}
$$

\star Round 2: $\quad B_{3}^{2}=2$

$$
\begin{aligned}
& \mathcal{P}_{2}(x)=x^{9}+c_{1} x^{6}+c_{1}^{2} x^{3}+c_{1}^{3} \\
& 9=[1001]_{2} 6=[110]_{2} 3=[11]_{2}
\end{aligned}
$$

There is a plateau whenever $B_{3}^{r}=B_{3}^{r-1}$.

Algebraic degree observed for $n=31$.

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$
\mathcal{E}_{r}=\left\{3 j \bmod \left(2^{n}-1\right) \text { where } j \preceq i, i \in \mathcal{E}_{r-1}\right\}
$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$
\mathcal{E}_{r}=\left\{3 j \bmod \left(2^{n}-1\right) \text { where } j \preceq i, i \in \mathcal{E}_{r-1}\right\}
$$

Example:

$$
\begin{gathered}
\mathcal{P}_{1}(x)=x^{3} \Rightarrow \mathcal{E}_{1}=\{3\} . \\
3=[11]_{2} \xrightarrow{\succeq}\left\{\begin{array}{lll}
{[00]_{2}=0} \\
{[01]_{2}=1} \\
{[10]_{2}=2} \\
{[11]_{2}=3} \\
\xrightarrow{x 3} & 0 \\
\xrightarrow{x 3} & 3 \\
\hline & 9
\end{array}\right. \\
\mathcal{E}_{2}=\{0,3,6,9\},
\end{gathered}
$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$
\mathcal{E}_{r}=\left\{3 j \bmod \left(2^{n}-1\right) \text { where } j \preceq i, i \in \mathcal{E}_{r-1}\right\}
$$

No exponent $\equiv 5,7 \bmod 8 \Rightarrow$ No exponent $2^{2 k}-1$

$$
\left.\ldots \quad 3^{r}\right\}
$$

Example: $63=2^{2 \times 3}-1 \notin \mathcal{E}_{4}=\{0,3, \ldots, 81\} \quad \Rightarrow B_{3}^{4}<6=w t(63)$

$$
\forall e \in \mathcal{E}_{4} \backslash\{63\}, w t(e) \leq 4 \quad \Rightarrow B_{3}^{4} \leq 4
$$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$$
B_{3}^{r} \leq 2 \times\left\lceil\left\lfloor\log _{2}\left(3^{r}\right)\right\rfloor / 2-1\right\rceil
$$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$$
B_{3}^{r} \leq 2 \times\left\lceil\left\lfloor\log _{2}\left(3^{r}\right)\right\rfloor / 2-1\right\rceil
$$

And a lower bound if $3^{r}<2^{n}-1$:
$B_{3}^{r} \geq \max \left\{w t\left(3^{i}\right), i \leq r\right\}$

Exact degree

Maximum-weight exponents:

Let $k_{r}=\left\lfloor\log _{2} 3^{r}\right\rfloor$.
$\forall r \in\{4, \ldots, 16265\} \backslash \mathcal{F}$ with $\mathcal{F}=\{465,571, \ldots\}:$

* if $k_{r}=1 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-5 \in \mathcal{E}_{r},
$$

\star if $k_{r}=0 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-7 \in \mathcal{E}_{r} .
$$

Example:

$$
\begin{aligned}
123 & =2^{7}-5=2^{k_{5}}-5 & & \in \mathcal{E}_{5}, \\
4089 & =2^{12}-7=2^{k_{8}}-7 & & \in \mathcal{E}_{8} .
\end{aligned}
$$

Exact degree

Maximum-weight exponents:

Let $k_{r}=\left\lfloor\log _{2} 3^{r}\right\rfloor$.
$\forall r \in\{4, \ldots, 16265\} \backslash \mathcal{F}$ with $\mathcal{F}=\{465,571, \ldots\}:$

* if $k_{r}=1 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-5 \in \mathcal{E}_{r},
$$

* if $k_{r}=0 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-7 \in \mathcal{E}_{r} .
$$

Example:

$$
\begin{aligned}
123 & =2^{7}-5=2^{k_{5}}-5 & & \in \mathcal{E}_{5}, \\
4089 & =2^{12}-7=2^{k_{8}}-7 & & \in \mathcal{E}_{8} .
\end{aligned}
$$

Constructing exponents.

$$
\exists \ell \text { s.t. } \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_{r} \in \mathcal{E}_{r}
$$

Exact degree

Maximum-weight exponents:

Let $k_{r}=\left\lfloor\log _{2} 3^{r}\right\rfloor$.
$\forall r \in\{4, \ldots, 16265\} \backslash \mathcal{F}$ with $\mathcal{F}=\{465,571, \ldots\}:$

* if $k_{r}=1 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-5 \in \mathcal{E}_{r},
$$

* if $k_{r}=0 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-7 \in \mathcal{E}_{r} .
$$

$$
\begin{gathered}
r-7 \\
r-6 \\
r-5 \\
r-4 \\
r-3 \\
r-2 \\
r-1 \\
r
\end{gathered}
$$

Constructing exponents.

$$
\exists \ell \text { s.t. } \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_{r} \in \mathcal{E}_{r}
$$

Exact degree

Maximum-weight exponents:

Let $k_{r}=\left\lfloor\log _{2} 3^{r}\right\rfloor$.
$\forall r \in\{4, \ldots, 16265\} \backslash \mathcal{F}$ with $\mathcal{F}=\{465,571, \ldots\}:$

* if $k_{r}=1 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-5 \in \mathcal{E}_{r}
$$

$r-7$
$r-6$
$r-5$
$r-4$
$r-3$
$r-2$

* if $k_{r}=0 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-7 \in \mathcal{E}_{r} .
$$

$$
r-1
$$

Example:

$$
\begin{aligned}
123 & =2^{7}-5=2^{k_{5}}-5 & & \in \mathcal{E}_{5}, \\
4089 & =2^{12}-7=2^{k_{8}}-7 & & \in \mathcal{E}_{8} .
\end{aligned}
$$

Constructing exponents.
\exists दs.t. $\quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_{r} \in \mathcal{E}_{r}$

Exact degree

Maximum-weight exponents:

Let $k_{r}=\left\lfloor\log _{2} 3^{r}\right\rfloor$.
$\forall r \in\{4, \ldots, 16265\} \backslash \mathcal{F}$ with $\mathcal{F}=\{465,571, \ldots\}:$

* if $k_{r}=1 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-5 \in \mathcal{E}_{r}
$$

* if $k_{r}=0 \bmod 2$,

$$
\omega_{r}=2^{k_{r}}-7 \in \mathcal{E}_{r} .
$$

Example:

$$
\begin{aligned}
123 & =2^{7}-5=2^{k_{5}}-5 & & \in \mathcal{E}_{5}, \\
4089 & =2^{12}-7=2^{k_{8}}-7 & & \in \mathcal{E}_{8} .
\end{aligned}
$$

Covered rounds

Idea of the proof:

* inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

Covered rounds

Idea of the proof:

* inductive proof: existence of "good" ℓ
* MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

Legend:

Plateau

$$
\Rightarrow \text { plateau when } k_{r}=\left\lfloor\log _{2} 3^{r}\right\rfloor=1 \bmod 2 \text { and } k_{r+1}=\left\lfloor\log _{2} 3^{r+1}\right\rfloor=0 \bmod 2
$$

Algebraic degree observed for $n=31$.

If we have a plateau

$$
B_{3}^{r}=B_{3}^{r+1},
$$

Then the next one is

$$
B_{3}^{r+4}=B_{3}^{r+5} \quad \text { or } \quad B_{3}^{r+5}=B_{3}^{r+6} .
$$

Music in MIMC_{3}

न. Patterns in sequence $\left(k_{r}\right)_{r>0}$:

$$
\begin{gathered}
\Rightarrow \text { denominators of semiconvergents of } \log _{2}(3) \simeq 1.5849625 \\
\mathfrak{D}=\{\boxed{1}, \boxed{2}, 3,5, \boxed{7}, 12,17,29,41,53,94,147,200,253,306,359, \ldots\}, \\
\log _{2}(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^{a} \simeq 3^{b}
\end{gathered}
$$

\curvearrowright Music theory:
δ perfect octave 2:1
。 perfect fifth 3:2

$$
2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^{7} \simeq\left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad 7 \text { octaves } \sim 12 \text { fifths }
$$

Comparison to previous work

First Bound: $\left\lceil r \log _{2} 3\right\rceil \Rightarrow$ Exact degree: $2 \times\left\lceil\left\lfloor r \log _{2} 3\right\rfloor / 2-1\right\rceil$.

Comparison to previous work

First Bound: $\left\lceil r \log _{2} 3\right\rceil \Rightarrow$ Exact degree: $2 \times\left\lceil\left\lfloor r \log _{2} 3\right\rfloor / 2-1\right\rceil$.

For $n=129, \mathrm{MIMC}_{3}=82$ rounds

Rounds	Time	Data	Source
$80 / 82$	$2^{128} \mathrm{XOR}$	2^{128}	$[\mathrm{EGL}+20]$
$81 / 82$	$2^{128} \mathrm{XOR}$	2^{128}	New
$80 / 82$	$2^{125} \mathrm{XOR}$	2^{125}	New

Secret-key distinguishers ($n=129$)

Take-Away

Algebraic Degree of MiMC

* guarantee on the degree of MIMC_{3}
\star upper bound on the algebraic degree

$$
2 \times\left\lceil\left\lfloor\log _{2}\left(3^{r}\right)\right\rfloor / 2-1\right\rceil .
$$

* bound tight, up to 16265 rounds
* minimal complexity for higher-order differential attack
(1) Emerging uses in symmetric cryptographyAlgebraic Degree of MiMC
- Exact degree
- Integral attacksAlgebraic Attacks
- Tricks for SPN
- Applied to Poseidon and Rescue-PrimeAnemol
- CCZ-equivalence
- New S-box: Flystel
- New mode: Jive

Ethereum Challenges

In Nov. 2021, a Cryptanalysis Challenge for AOP by the Ethereum Foundation.
Feistel-MiMC, Rescue-Prime, Poseidon, Reinforced Concrete

CICO: Constrained Input Constrained Output

Definition

Let $P: \mathbb{F}_{q}^{t} \rightarrow \mathbb{F}_{q}^{t}$ and $u<t$. The CICO problem is:

$$
\text { Finding } X, Y \in \mathbb{F}_{q}^{t-u} \text { s.t. } P\left(X, 0^{u}\right)=\left(Y, 0^{u}\right)
$$

when $t=3, u=1$.

Ethereum Challenges

In Nov. 2021, a Cryptanalysis Challenge for AOP by the Ethereum Foundation.

Feistel-MiMC, Rescue-Prime, Poseidon, Reinforced Concrete

CICO: Constrained Input Constrained Output

Definition

Let $P: \mathbb{F}_{q}^{t} \rightarrow \mathbb{F}_{q}^{t}$ and $u<t$. The CICO problem is:

when $t=3, u=1$.

Solving Systems:

* Univariate systems: Find the roots of a polynomial $P \in \mathbb{F}_{q}[X]: \quad \widetilde{\mathcal{O}}(d), d=\operatorname{deg}(P)$
* Multivariate systems: Compute a Gröbner basis from polynomial equations in

$$
\mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]: P_{j, j=1, \ldots, n}\left(X_{1}, \ldots X_{n}\right)=0: \quad \widetilde{\mathcal{O}}\left(d^{3}\right)
$$

Ethereum Challenges

In Nov. 2021, a Cryptanalysis Challenge for AOP by the Ethereum Foundation.

Feistel-MiMC, Rescue-Prime, Poseidon, Reinforced Concrete

CICO: Constrained Input Constrained Output

Definition

Let $P: \mathbb{F}_{q}^{t} \rightarrow \mathbb{F}_{q}^{t}$ and $u<t$. The CICO problem is:

when $t=3, u=1$.

Solving Systems:

* Univariate systems: Find the roots of a polynomial $P \in \mathbb{F}_{q}[X]: \quad \widetilde{\mathcal{O}}(d), d=\operatorname{deg}(P)$
* Multivariate systems: Compute a Gröbner basis from polynomial equations in $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]: P_{j, j=1, \ldots, n}\left(X_{1}, \ldots X_{n}\right)=0: \quad \widetilde{\mathcal{O}}\left(d^{3}\right)$
\Rightarrow build univariate systems when possible!

Trick for SPN

Let $P=P_{0} \circ P_{1}$ be a permutation of \mathbb{F}_{p}^{3} and suppose

$$
\exists V, G \in \mathbb{F}_{p}^{3}, \quad \text { s.t. } \forall X \in \mathbb{F}_{p}, \quad P_{0}^{-1}(X V+G)=(*, *, 0) .
$$

Approach used against Poseidon and Rescue-Prime

Poseidon

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, USENIX 2021

* SPN construction:
* S-Box layer: $x \mapsto x^{\alpha},(\alpha=3)$
* Linear layer: MDS
* Round constants addition: AddC
\star Number of rounds (for challenges):

$$
\begin{aligned}
R & =2 \times R f+R P \\
& =8+(\text { from } 3 \text { to } 24) .
\end{aligned}
$$

Poseidon

$$
\left\{\begin{array}{l}
V=\left(A^{3}, B^{3}, 0\right), \\
G=(0,0, g),
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
B=-\frac{\alpha_{0,2}}{\alpha_{1,2}} A \\
g=\left(\frac{1}{\alpha_{2,2}}\left(\alpha_{0,2} c_{0}^{1}+\alpha_{1,2} c_{1}^{1}\right)+c_{2}^{1}+\left(c_{2}^{0}\right)^{3}\right)^{3} .
\end{array}\right.
$$

R	Designers claims	Ethereum estimations	d	complexity
$8+3$	2^{17}	2^{45}	3^{9}	2^{26}
$8+8$	2^{25}	2^{53}	3^{14}	2^{35}
$8+13$	2^{33}	2^{61}	3^{19}	2^{44}
$8+19$	2^{42}	2^{69}	3^{25}	2^{54}
$8+24$	2^{50}	2^{77}	3^{30}	2^{62}

Complexity of our attack against Poseidon.

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, ToSC 2020

* SPN construction:
* S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1 / \alpha},(\alpha=3)$
* Linear layer: MDS
* Round constants addition: AddC
\star Number of rounds (for challenges):

$$
\begin{aligned}
& R=\text { from } 4 \text { to } 8 \\
& (2 \mathrm{~S} \text {-boxes per round }) .
\end{aligned}
$$

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, ToSC 2020

* SPN construction:
* S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1 / \alpha},(\alpha=3)$
* Linear layer: MDS

Example of parameters

* Round constants addition: AddC
\star Number of rounds (for challenges):

$$
\begin{aligned}
p & =18446744073709551557 \\
& \simeq 2^{64} \\
\alpha & =3 \\
\alpha^{-1} & =12297829382473034371
\end{aligned}
$$

$R=$ from 4 to 8
(2 S-boxes per round).

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, ToSC 2020

* SPN construction:
* S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1 / \alpha},(\alpha=3)$
* Linear layer: MDS
* Round constants addition: AddC
\star Number of rounds (for challenges):

$$
\begin{aligned}
& R=\text { from } 4 \text { to } 8 \\
& (2 \mathrm{~S} \text {-boxes per round }) .
\end{aligned}
$$

Rescue-Prime

$$
\left\{\begin{aligned}
V & =\left(A^{3}, B^{3}, 0\right), \\
G & =(0,0, g),
\end{aligned}\right.
$$

with

$$
\left\{\begin{array}{l}
B=-\frac{\alpha_{0,2}}{\alpha_{1,2}} A \\
g=\left(\frac{1}{\alpha_{2,2}}\left(\alpha_{0,2} c_{0}^{0}+\alpha_{1,2} c_{1}^{0}\right)+c_{2}^{0}\right)^{1 / 3}
\end{array}\right.
$$

R	m	Designers claims	Ethereum estimations	d	complexity
4	3	2^{36}	$2^{37.5}$	3^{9}	2^{43}
6	2	2^{40}	$2^{37.5}$	3^{11}	2^{53}
7	2	2^{48}	$2^{43.5}$	3^{13}	2^{62}
5	3	2^{48}	2^{45}	3^{12}	2^{57}
8	2	2^{56}	$2^{49.5}$	3^{15}	2^{72}

Complexity of our attack against Rescue.

Algebraic Attacks against some AOP

* consider as many variants of encoding as possible
* build univariate instead of multivariate systems
* start (and end) with a linear layer
* 2 rounds can be skipped with the trick

Emerging uses in symmetric cryptographyAlgebraic Degree of MiMC

- Exact degree
- Integral attacks
- Tricks for SPN
- Applied to Poseidon and Rescue-PrimeAnemoi
- CCZ-equivalence
- New S-box: Flystel
- New mode: Jive

Why Anemoi?

* Anemoi

Family of ZK-friendly Hash functions

Why Anemoi?

* Anemoi

Family of ZK-friendly Hash functions

* Anemoi

Greek gods of winds

Our approach

Need: verification using few multiplications.

Our approach

Need: verification using few multiplications.
First approach: evaluation also using few multiplications.

$$
y \leftarrow E(x) \quad \sim E: \text { low degree } \quad y==E(x) \quad \sim E \text { : low degree }
$$

Our approach

Need: verification using few multiplications.
First approach: evaluation also using few multiplications.
$y \leftarrow E(x) \sim E$: low degree

$$
y==E(x) \quad \sim E: \text { low degree }
$$

\Rightarrow vulnerability to some attacks?

Our approach

Need: verification using few multiplications.
First approach: evaluation also using few multiplications.

$$
y \leftarrow E(x) \sim E: \text { low degree } \quad y==E(x) \sim E \text { : low degree }
$$

\Rightarrow vulnerability to some attacks?
New approach:
using CCZ-equivalence
Our vision
A function is arithmetization-oriented if it is CCZ-equivalent to a function that can be verified efficiently.

Our approach

Need: verification using few multiplications.
First approach: evaluation also using few multiplications.

$$
y \leftarrow E(x) \sim E \text { : low degree } \quad y==E(x) \sim E \text { : low degree }
$$

\Rightarrow vulnerability to some attacks?
New approach:
using CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is CCZ-equivalent to a function that can be verified efficiently.

$$
y \leftarrow F(x) \sim F \text { : high degree } \quad v==G(u) \sim G \text { : low degree }
$$

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]
$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are CCZ-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]
$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are CCZ-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.
$\star F$ and G have the same differential properties: $\delta_{F}=\delta_{G}$.

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]
$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are CCZ-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.

* F and G have the same differential properties: $\delta_{F}=\delta_{G}$.
$\star F$ and G have the same linear properties: $\mathcal{W}_{F}=\mathcal{W}_{G}$.

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are $\mathbf{C C Z}$-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\}
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.
$\star F$ and G have the same differential properties: $\delta_{F}=\delta_{G}$.
$\star F$ and G have the same linear properties: $\mathcal{W}_{F}=\mathcal{W}_{G}$.
\star Verification is the same: if $y \leftarrow F(x), v \leftarrow G(u)$

$$
y==F(x) ? \quad \Longleftrightarrow \quad v==G(u) ?
$$

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are CCZ-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.

* F and G have the same differential properties: $\delta_{F}=\delta_{G}$.
$\star F$ and G have the same linear properties: $\mathcal{W}_{F}=\mathcal{W}_{G}$.
\star Verification is the same: if $y \leftarrow F(x), v \leftarrow G(u)$

$$
y==F(x) ? \quad \Longleftrightarrow \quad v==G(u) ?
$$

* The degree is not preserved.

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

$F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are CCZ-equivalent if

$$
\Gamma_{F}=\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{A}\left(\Gamma_{G}\right)=\left\{\mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q}\right\},
$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x)=\mathcal{L}(x)+c$.
$\star F$ and G have the same differential properties: $\delta_{F}=\delta_{G}$.
$\star F$ and G have the same linear properties: $\mathcal{W}_{F}=\mathcal{W}_{G}$.
\star Verification is the same: if $y \leftarrow F(x), v \leftarrow G(u)$

$$
y==F(x) ? \quad \Longleftrightarrow \quad v==G(u) ?
$$

* The degree is not preserved.

The Flystel

Butterfly + Feistel \Rightarrow Flystel

A 3-round Feistel-network with
$Q_{\gamma}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $Q_{\delta}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ two quadratic functions, and $E: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ a permutation

High-degree permutation

Open Flystel \mathcal{H}.

Low-degree

 function

Closed Flystel \mathcal{V}.

The Flystel

$$
\begin{aligned}
\Gamma_{\mathcal{H}} & =\left\{((x, y), \mathcal{H}((x, y))) \mid(x, y) \in \mathbb{F}_{q}^{2}\right\} \\
& =\mathcal{A}\left(\left\{((v, y), \mathcal{V}((v, y))) \mid(v, y) \in \mathbb{F}_{q}^{2}\right\}\right) \\
& =\mathcal{A}\left(\Gamma_{\mathcal{V}}\right)
\end{aligned}
$$

High-degree permutation

Open Flystel \mathcal{H}.

Closed Flystel \mathcal{V}.

Advantage of CCZ-equivalence

* High Degree Evaluation.

High-degree permutation

Open Flystel \mathcal{H}.

Low-degree function

Closed Flystel \mathcal{V}.

Advantage of CCZ-equivalence

* High Degree Evaluation.

$$
(u, v)==\mathcal{H}(x, y) \Leftrightarrow(x, u)==\mathcal{V}(y, v)
$$

* Low Cost Verification.

High-degree permutation

Open Flystel \mathcal{H}.

Closed Flystel \mathcal{V}.

Flystel in $\mathbb{F}_{2^{n}}$

$$
\mathcal{H}:\left\{\begin{array}{cc}
\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} & \rightarrow \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} \\
(x, y) \mapsto & \left(x+\beta y^{3}+\gamma+\beta\left(y+\left(x+\beta y^{3}+\gamma\right)^{1 / 3}\right)^{3}+\delta,\right. \\
\left.y+\left(x+\beta y^{3}-\gamma\right)^{1 / 3}\right) .
\end{array} \quad \mathcal{V}: \begin{cases}\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} & \rightarrow \mathbb{F}_{2^{2}} \times \mathbb{F}_{2^{n}} \\
(x, y) & \mapsto\left((y+v)^{3}+\beta y^{3}+\gamma,\right. \\
& \left.(y+v)^{3}+\beta v^{3}+\delta\right),\end{cases}\right.
$$

Closed Flystel ${ }_{2}$.

Properties of Flystel in $\mathbb{F}_{2^{n}}$

First introduced by [Perrin et al. 2016].
Well-studied butterfly.
Theorems in [Li et al. 2018] state that
if $\beta \neq 0$:

* Differential properties
\star Flystel $_{2}: \delta_{\mathcal{H}}=\delta_{\mathcal{V}}=4$
* Linear properties
\star Flystel $_{2}: \mathcal{W}_{\mathcal{H}}=\mathcal{W}_{\mathcal{V}}=2^{n+1}$
* Algebraic degree
\star Open Flystel $_{2}: \operatorname{deg}_{\mathcal{H}}=n$
\star Closed $^{\mathrm{Fl}} \mathrm{ys}^{2} \mathrm{l}_{2}: \operatorname{deg}_{\mathcal{V}}=2$
Degenerated Butterfly.

Flystel in \mathbb{F}_{p}

$$
\mathcal{H}:\left\{\begin{aligned}
\mathbb{F}_{p} \times \mathbb{F}_{p} & \rightarrow \mathbb{F}_{p} \times \mathbb{F}_{p} \\
(x, y) & \mapsto\left(x-\beta y^{2}-\gamma+\beta\left(y-\left(x-\beta y^{2}-\gamma\right)^{1 / \alpha}\right)^{2}+\delta, \quad \mathcal{V}:\left\{\begin{array}{rl}
\mathbb{F}_{p} \times \mathbb{F}_{p} & \rightarrow \mathbb{F}_{p} \times \mathbb{F}_{p} \\
(y, v) & \mapsto(y-v)^{\alpha}+\beta y^{2}+\gamma, \\
& \left.y-\left(x-\beta y^{2}-\gamma\right)^{1 / \alpha}\right) .
\end{array} \quad(v-y)^{\alpha}+\beta v^{2}+\delta\right) .\right.
\end{aligned}\right.
$$

usually
$\alpha=3$ or 5.

Open Flystel $_{p}$.

Closed Flystel ${ }_{p}$.

Properties of Flystel in \mathbb{F}_{p}

* Differential properties

Flystel $_{\mathrm{p}}$ has a differential uniformity equals to $\alpha-1$.

(a) when $p=11$ and $\alpha=3$.
(b) when $p=13$ and $\alpha=5$.

DDT of $F 1 y s t e l_{p}$.

(c) when $p=17$ and $\alpha=3$.

Properties of Flystel in \mathbb{F}_{p}

* Linear properties

$$
\mathcal{W} \leq p \log p ?
$$

(a) For different α.

(b) For the smallest α.

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_{p}

* Linear properties

$$
\mathcal{W} \leq p \log p ?
$$

(a) when $p=11$ and $\alpha=3$.

(b) when $p=13$ and $\alpha=5$.

(c) when $p=17$ and $\alpha=3$.

LAT of Flystel ${ }_{p}$.

The SPN Structure

The internal state of Anemoi and its basic operations.

x_{0}	x_{1}	\cdots	$x_{\ell-1}$
y_{0}	y_{1}	\cdots	$y_{\ell-1}$

(a) Internal state

(b) The diffusion layer \mathcal{M}.

(c) The PHT \mathcal{P}.
(d) The S-box layer \mathcal{S}.

(e) The constant addition \mathcal{A}.

The SPN Structure

Number of rounds

$$
\text { Anemoi }_{q, \alpha, \ell}=\mathcal{M} \circ \mathrm{R}_{n_{r}-1} \circ \ldots \circ \mathrm{R}_{0}
$$

\Rightarrow Choosing the number of rounds:

$$
\begin{gathered}
n_{r} \geq \max \{8, \underbrace{\min (5,1+\ell)}_{\text {security margin }}+\underbrace{2+\min \left\{r \in \mathbb{N} \left\lvert\,\binom{ 4 \ell r+\kappa_{\alpha}}{2 \ell r}^{2} \geq 2^{s}\right.\right\}}_{\text {to prevent algebraic attacks }}\} \\
\qquad \begin{array}{l}
\begin{array}{lllll}
\hline \alpha\left(\kappa_{\alpha}\right) & 3(1) & 5(2) & 7(4) & 11(9) \\
\hline \ell=1 & 21 & 21 & 20 & 19 \\
\hline \ell=2 & 14 & 14 & 13 & 13 \\
\hline \ell=3 & 12 & 12 & 12 & 11 \\
\hline \ell=4 & 12 & 12 & 11 & 11 \\
\hline
\end{array}
\end{array} . .
\end{gathered}
$$

Number of Rounds of Anemoi ($s=128$).

New Mode: Jive

* Hash function (random oracle):
* input: arbitrary length
* ouput: fixed length

New Mode: Jive

* Hash function (random oracle):
* input: arbitrary length
* ouput: fixed length
\star Compression function (Merkle-tree):
* input: fixed length
* output: (input length) /2

Dedicated mode $\Rightarrow 2$ words in 1

$$
(x, y) \mapsto x+y+u+v
$$

New Mode: Jive

* Hash function (random oracle):
* input: arbitrary length
* ouput: fixed length
\star Compression function (Merkle-tree):
* input: fixed length
* output: (input length) /b

Dedicated mode $\Rightarrow \mathrm{b}$ words in 1

$$
\operatorname{Jive}_{b}(P): \begin{cases}\left(\mathbb{F}_{q}^{m}\right)^{b} & \rightarrow \mathbb{F}_{q}^{m} \\ \left(x_{0}, \ldots, x_{b-1}\right) & \mapsto \sum_{i=0}^{b-1}\left(x_{i}+P_{i}\left(x_{0}, \ldots, x_{b-1}\right)\right) .\end{cases}
$$

Some Benchmarks

	m	$R P$	Poseidon	Griffin	Anemoi
R1CS	2	208	198	-	$\mathbf{7 6}$
	4	224	232	112	$\mathbf{9 6}$
	6	216	264	-	$\mathbf{1 2 0}$
	8	256	296	176	$\mathbf{1 6 0}$
	2	312	380	-	$\mathbf{1 8 9}$
	4	560	1336	$\mathbf{2 6 0}$	308
	6	756	3024	-	444
	8	1152	5448	$\mathbf{5 7 4}$	624
AIR	2	156	300	-	$\mathbf{1 2 6}$
	$\mathbf{4}$	$\mathbf{1 6 8}$	348	$\mathbf{1 6 8}$	$\mathbf{1 6 8}$
	6	$\mathbf{1 6 2}$	396	-	216
	8	$\mathbf{1 9 2}$	480	264	288

(a) when $\alpha=3$

	m	$R P$	Poseidon	Griffin	Anemoi
R1CS	2	240	216	-	$\mathbf{9 5}$
	4	264	264	$\mathbf{1 1 0}$	120
	6	288	315	-	$\mathbf{1 5 0}$
	8	384	363	$\mathbf{1 6 2}$	200
	2	320	344	-	$\mathbf{2 1 0}$
	4	528	1032	$\mathbf{2 2 2}$	336
	6	768	2265	-	$\mathbf{4 8 0}$
	8	1280	4003	$\mathbf{4 9 2}$	672
AIR	2	$\mathbf{2 0 0}$	360	-	210
	$\mathbf{4}$	$\mathbf{2 2 0}$	440	$\mathbf{2 2 0}$	280
	6	$\mathbf{2 4 0}$	540	-	360
	8	$\mathbf{3 2 0}$	640	360	480

(b) when $\alpha=5$

Constraint comparison for Rescue-Prime, Poseidon, Griffin and Anemoi ($s=128$)
for standard arithmetization, without optimization.

Take-Away

Anemoi

* A new family of ZK-friendly hash functions
* Contributions of fundamental interest:
* New S-box: Flystel
* New mode: Jive
* Identify a link between AO and CCZ-equivalence

Conclusions

* A better understanding of the algebraic degree of MIMC_{3}

More details on doi.org/10.1007/s10623-022-01136-x (or eprint.iacr.org/2022/366)

* Practical attacks against AO hash functions

More details on doi.org/10.46586/tosc.v2022.i3.73-101

* Anemoi: a new family of ZK-friendly hash functions

More details on eprint.iacr.org/2022/840

Conclusions

* A better understanding of the algebraic degree of MIMC_{3}

More details on doi.org/10.1007/s10623-022-01136-x (or eprint.iacr.org/2022/366)

* Practical attacks against AO hash functions

More details on doi.org/10.46586/tosc.v2022.i3.73-101

* Anemoi: a new family of ZK-friendly hash functions

More details on eprint.iacr.org/2022/840

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thanks for your attention!

