Algebraic Attacks

Design and Cryptanalysis of Arithmetization-Oriented Primitives.

Clémence Bouvier ^{1,2}

including joint works with Augustin Bariant², Pierre Briaud^{1,2}, Anne Canteaut², Pyrros Chaidos³, Gaëtan Leurent², Léo Perrin², Robin Salen⁴, Vesselin Velichkov^{5,6} and Danny Willems^{7,8}

¹Sorbonne Université,

²Inria Paris,

³National & Kapodistrian University of Athens, ⁴Toposware Inc., Boston, ⁵University of Edinburgh, ⁶Clearmatics, London, ⁷Nomadic Labs, Paris, ⁸Inria and LIX, CNRS

May, 2023

Motivation

Motivation

Motivation

Content

Design and Cryptanalysis of Arithmetization-Oriented Primitives.

Emerging uses in symmetric cryptography

2 Algebraic Degree of MiMC

- Exact degree
- Integral attacks

3 Algebraic Attacks

- Tricks for SPN
- Applied to **POSEIDON** and Rescue-Prime

4) Anemoi

- CCZ-equivalence
- New S-box: Flystel
- New mode: Jive

Comparison with "usual" case

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- ★ Field size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- Operations: large finite-field arithmetic

Comparison with "usual" case

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- * Field size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- Operations: large finite-field arithmetic

 $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z},$ with p given by the order of some elliptic curves

Examples: * Curve BLS12-381 $\log_2 p = 255$ p = 52435875175126190479447740508185965837690552500527637822603658699938581184513 * Curve BLS12-377 $\log_2 p = 253$ p = 8444461749428370424248824938781546531375899335154063

827935233455917409239041

Comparison with "usual" case

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- ★ Field size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- Operations: large finite-field arithmetic

New properties

Arithmetization-friendly

$$y \leftarrow E(x)$$
 and $y == E(x)$

 Optimized for: integration within advanced protocols

Comparison with "usual" case

A new environment

Algebraic Degree of MiMC

- Exact degree
- Integral attacks

3 Algebraic Attacks

- Tricks for SPN
- Applied to **POSEIDON** and Rescue-Prime

🕘 Anemoi

- CCZ-equivalence
- New S-box: Flystel
- New mode: Jive

Exact degree Integral attacks

The block cipher MiMC

- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., Asiacrypt16]:
 - ★ *n*-bit blocks (*n* odd ≈ 129): $x \in \mathbb{F}_{2^n}$
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

Exact degree Integral attacks

The block cipher MiMC

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ★ Construction of MiMC₃ [Albrecht et al., Asiacrypt16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

 $R:=\lceil n\log_3 2\rceil \ .$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

Exact degree Integral attacks

The block cipher MiMC

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- * Construction of MiMC₃ [Albrecht et al., Asiacrypt16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

 $R:=\lceil n\log_3 2\rceil \ .$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

Exact degree Integral attacks

-

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$$

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic Degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^{a}(f) = \max \left\{ \operatorname{hw}\left(u
ight) : u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0
ight\} \,,$$

Exact degree Integral attacks

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$$

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic Degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^{\mathsf{a}}(f) = \max \left\{ \operatorname{hw}(u) : u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0 \right\} ,$$

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, then

$$\deg^a(F) = \max\{\deg^a(f_i), \ 1 \le i \le m\} \ .$$

where $F(x) = (f_1(x), ..., f_m(x)).$

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n]/((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$

This is the Algebraic Normal Form (ANF) of f.

Example:

 $F: \mathbb{F}_{2^{11}} \to \mathbb{F}_{2^{11}}, x \mapsto x^3$

 $F: \mathbb{F}_2^{11} \to \mathbb{F}_2^{11}, (\mathbf{x}_0, \dots, \mathbf{x}_{10}) \mapsto$

 $\begin{aligned} & (x_{0}x_{10} + x_{0} + x_{1}x_{5} + x_{1}x_{9} + x_{2}x_{7} + x_{2}x_{9} + x_{2}x_{10} + x_{3}x_{4} + x_{3}x_{5} + x_{4}x_{8} + x_{4}x_{9} + x_{5}x_{10} + x_{6}x_{7} + x_{6}x_{10} + x_{7}x_{8} + x_{9}x_{10}, \\ & x_{0}x_{1} + x_{0}x_{6} + x_{2}x_{5} + x_{2}x_{8} + x_{3}x_{6} + x_{3}x_{9} + x_{3}x_{10} + x_{4} + x_{5}x_{8} + x_{5}x_{9} + x_{7}x_{8} + x_{7}x_{9} + x_{7} + x_{10}, \\ & x_{0}x_{1} + x_{0}x_{6} + x_{2}x_{5} + x_{2}x_{8} + x_{3}x_{6} + x_{3}x_{9} + x_{3}x_{1} + x_{4}x_{5} + x_{4}x_{8} + x_{4}x_{10} + x_{5}x_{10} + x_{6}x_{7} + x_{6}x_{8} + x_{6}x_{9} + x_{7}x_{10} + x_{8} + x_{9}x_{10}, \\ & x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{10} + x_{1}x_{5} + x_{1}x_{6} + x_{1}x_{9} + x_{2}x_{7} + x_{3}x_{4} + x_{3}x_{7} + x_{4}x_{8} + x_{4}x_{10} + x_{5}x_{10} + x_{6}x_{7} + x_{6}x_{8} + x_{6}x_{9} + x_{7}x_{10} + x_{8} + x_{9}x_{10}, \\ & x_{0}x_{3} + x_{0}x_{7} + x_{1} + x_{2}x_{5} + x_{2}x_{6} + x_{2}x_{7} + x_{3}x_{6} + x_{3}x_{7} + x_{3}x_{9} + x_{4}x_{5} + x_{4}x_{7} + x_{4}x_{9} + x_{5}x_{10} + x_{6}x_{9} + x_{7}x_{10} + x_{6}x_{9} + x_{7}x_{10} + x_{7}x_{9} + x_{7}x_{9} + x_{7}x_{10} + x_{8}x_{9} + x_{8}x_{10}, \\ & x_{0}x_{5} + x_{0}x_{7} + x_{0}x_{8} + x_{1}x_{7} + x_{1}x_{8} + x_{2}x_{10} + x_{3}x_{5} + x_{3}x_{7} + x_{3}x_{9} + x_{4}x_{5} + x_{4}x_{7} + x_{4}x_{9} + x_{5}x_{10} + x_{5}x_{9} + x_{7}x_{10} + x_{9}, \\ & x_{0}x_{5} + x_{0}x_{7} + x_{0}x_{8} + x_{1}x_{7} + x_{1}x_{8} + x_{2} + x_{1}x_{7} + x_{2}x_{8} + x_{3}x_{1} + x_{3}x_{9} + x_{4}x_{1} + x_{5}x_{6} + x_{5}x_{9} + x_{7}x_{10} + x_{8}, \\ & x_{0}x_{7} + x_{0}x_{8} + x_{1}x_{1} + x_{1}x_{7} + x_{1}x_{8} + x_{2} + x_{3}x_{7} + x_{3}x_{9} + x_{4}x_{1} + x_{4}x_{1} + x_{4}x_{1} + x_{1}x_{7} + x_{1}x_{8} + x_{2}x_{1} + x_{3}x_{7} + x_{3}x_{9} + x_{4}x_{1} + x_{4}x_{1} + x_{5}x_{6} + x_{5}x_{9} + x_{7}x_{10} + x_{8}, \\ & x_{0}x_{7} + x_{0}x_{8} + x_{1}x_{9} + x_{1}x_{8} + x_{2}x_{1} + x_{3}x_{9} + x_{3}x_{1} + x_{4}x_{9} + x_{4}x_{1} + x_{5}x_{6} + x_{5}x_{9} + x_{5}x_{1} + x_{5}x_{8} + x_{5}x_{1} + x_{5}x_{9} + x_{5}x_{1} + x_{5}x_{9} + x_{5}x_$

Exact degree Integral attacks

Algebraic degree - 2nd definition

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$,

there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$\mathcal{F}(x)=\sum_{i=0}^{2^n-1}b_ix^i; b_i\in\mathbb{F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\operatorname{hw}(i), \ 0 \leq i < 2^{n}, \text{ and } b_{i} \neq 0\}$$

Example: $\deg^u(x \mapsto x^3) = 3$ $\deg^a(x \mapsto x^3) = 2$

Exact degree Integral attacks

Algebraic degree - 2nd definition

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$,

there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$${\mathcal F}(x)=\sum_{i=0}^{2^n-1}b_ix^i;\,b_i\in {\mathbb F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\operatorname{hw}(i), \ 0 \leq i < 2^{n}, \ \text{and} \ b_{i} \neq 0\}$$

Example: $\deg^u(x \mapsto x^3) = 3$ $\deg^a(x \mapsto x^3) = 2$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

 $\deg^a(F) \le n-1$

Exact degree Integral attack

Integral attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Exact degree Integral attacks

Integral attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \mbox{ Aim: determine } B_3^r := \max_c \deg^a \mbox{MIMC}_{3,c}[r] \ .$

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * Round 1: $B_3^1 = 2$

$$\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$$

 $3 = [11]_2$

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$

$$3 = [11]_2$$

* Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{ \exists j \bmod (2^n - 1) \text{ where } j \preceq i, \ i \in \mathcal{E}_{r-1} \}$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

Example:

$$\begin{aligned} \mathcal{P}_{1}(x) &= x^{3} \quad \Rightarrow \quad \mathcal{E}_{1} = \{3\} \; . \\ 3 &= [11]_{2} \quad \stackrel{\succeq}{\longrightarrow} \quad \begin{cases} [00]_{2} &= 0 & \stackrel{\times 3}{\longrightarrow} & 0 \\ [01]_{2} &= 1 & \stackrel{\times 3}{\longrightarrow} & 3 \\ [10]_{2} &= 2 & \stackrel{\times 3}{\longrightarrow} & 6 \\ [11]_{2} &= 3 & \stackrel{\times 3}{\longrightarrow} & 9 \end{cases} \\ \mathcal{E}_{2} &= \{0, 3, 6, 9\} \; , \\ \mathcal{P}_{2}(x) &= x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3} \; . \end{aligned}$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{ \exists j \bmod (2^n - 1) \text{ where } j \preceq i, \ i \in \mathcal{E}_{r-1} \}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow$ No exponent $2^{2k} - 1$

Example:
$$63 = 2^{2\times 3} - 1 \notin \mathcal{E}_4 = \{0, 3, \dots, 81\}$$

 $\forall e \in \mathcal{E}_4 \setminus \{63\}, wt(e) \le 4$ $\Rightarrow B_3^4 \le 4$

Exact degree Integral attacks

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

 $B_3^r \leq 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$

Exact degree Integral attacks

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$B_3^r \leq 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$

And a lower bound if $3^r < 2^n - 1$:

 $B_3^r \geq \max\{wt(3^i), i \leq r\}$

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, ..., 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, ...\}:$ * if $k_r = 1 \mod 2$, $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r$,

* if $k_r = 0 \mod 2$,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F}$ with $\mathcal{F} = \{465, 571, \dots\}$: \star if $k_r = 1 \mod 2$, $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r$, \star if $k_r = 0 \mod 2$.

 $\omega_r=2^{k_r}-7\in\mathcal{E}_r.$

Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F}$ with $\mathcal{F} = \{465, 571, \dots\}$: \star if $k_r = 1 \mod 2$, $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r$, \star if $k_r = 0 \mod 2$,

 $\omega_r=2^{k_r}-7\in\mathcal{E}_r.$

Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Exact degree Integral attack:

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, ..., 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, ...\}:$ $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ $\star \text{ if } k_r = 0 \mod 2,$

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Exact degree Integral attacks

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, ..., 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, ...\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ $\star \text{ if } k_r = 0 \mod 2,$

 $\omega_r=2^{k_r}-7\in\mathcal{E}_r.$

Example:

$$123 = 2^7 - 5 = 2^{k_5} - 5 \qquad \in \mathcal{E}_5,$$

$$4089 = 2^{12} - 7 = 2^{k_8} - 7 \qquad \in \mathcal{E}_8.$$

$$\exists \, \ell \text{ s.t. } \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \ \Rightarrow \ \omega_r \in \mathcal{E}_r$$

Exact degree Integral attacks

Covered rounds

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

466 486 518 571 624 647 665 718 771 824

Legend:

rounds not covered

16225

 \rightarrow

16265

Exact degree Integral attack

Covered rounds

Idea of the proof:

- \star inductive proof: existence of "good" ℓ
- ⋆ MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

Exact degree Integral attacks

Plateau

 \Rightarrow plateau when $k_r = \lfloor \log_2 3^r \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor \log_2 3^{r+1} \rfloor = 0 \mod 2$

Algebraic degree observed for n = 31.

If we have a plateau

$$B_3^r = B_3^{r+1} ,$$

$$B_3^{r+4} = B_3^{r+5}$$
 or $B_3^{r+5} = B_3^{r+6}$.

Exact degree Integral attacks

Music in MIMC₃

→ Patterns in sequence $(k_r)_{r>0}$:

 \Rightarrow denominators of semiconvergents of log₂(3) \simeq 1.5849625

 $\mathfrak{D} = \{1, 2, 3, 5, 7, 12, 17, 29, 41, 53, 94, 147, 200, 253, 306, 359, \ldots\},\$

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

Music theory:

perfect octave 2:1

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad 7 \text{ octaves } \sim 12 \text{ fifths}$$

Exact degree Integral attacks

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

Exact degree Integral attacks

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

For n = 129, MIMC₃ = 82 rounds

	Rounds	Time	Data	Source
_	80/82	$2^{128}\mathrm{XOR}$	2 ¹²⁸	[EGL+20]
-	<mark>81</mark> /82	2^{128} XOR	2 ¹²⁸	New
	80/82	2^{125} XOR	2 ¹²⁵	New

Secret-key distinguishers (n = 129)

Algebraic Degree of MiMC

- * guarantee on the degree of MIMC₃
 - \star upper bound on the algebraic degree

 $2 \times \left\lceil \lfloor \log_2(3^r) \rfloor / 2 - 1
ight
ceil$.

\star bound tight, up to 16265 rounds

 \star minimal complexity for higher-order differential attack

ricks for SPN pplied to POSEIDON and Rescue–Prime

2 Algebraic Degree of MiMC

- Exact degree
- Integral attacks

3 Algebraic Attacks

- Tricks for SPN
- Applied to **POSEIDON** and Rescue-Prime

🕘 Anemoi

- CCZ-equivalence
- New S-box: Flystel
- New mode: Jive

Tricks for SPN Applied to POSEIDON and Rescue–Prime

Ethereum Challenges

In Nov. 2021, a Cryptanalysis Challenge for AOP by the Ethereum Foundation.

 ${\sf Feistel-MiMC}, \ {\sf Rescue-Prime}, \ {\sf POSEIDON}, \ {\tt Reinforced} \ {\sf Concrete}$

CICO: Constrained Input Constrained Output Definition Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t. The CICO problem is: Finding $X, Y \in \mathbb{F}_q^{t-u}$ s.t. $P(X, 0^u) = (Y, 0^u)$.

when
$$t = 3$$
, $u = 1$.

Tricks for SPN Applied to POSEIDON and Rescue–Prime

Ethereum Challenges

In Nov. 2021, a Cryptanalysis Challenge for AOP by the Ethereum Foundation.

 ${\sf Feistel-MiMC}, \ {\sf Rescue-Prime}, \ {\sf Poseidon}, \ {\sf Reinforced} \ {\sf Concrete}$

CICO: Constrained Input Constrained Output Definition Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t. The CICO problem is: Finding $X, Y \in \mathbb{F}_q^{t-u}$ s.t. $P(X, 0^u) = (Y, 0^u)$.

when t = 3, u = 1.

Solving Systems:

- ★ Univariate systems: Find the roots of a polynomial $P \in \mathbb{F}_q[X]$: $\widetilde{\mathcal{O}}(d)$, $d = \deg(P)$
- * **Multivariate systems**: Compute a Gröbner basis from polynomial equations in $\mathbb{F}_q[X_1, \ldots, X_n]$: $P_{j,j=1,\ldots,n}(X_1, \ldots, X_n) = 0$: $\widetilde{\mathcal{O}}(d^3)$

Tricks for SPN Applied to POSEIDON and Rescue–Prime

Ethereum Challenges

In Nov. 2021, a Cryptanalysis Challenge for AOP by the Ethereum Foundation.

 ${\sf Feistel-MiMC}, \ {\sf Rescue-Prime}, \ {\sf PoseIDon}, \ {\sf Reinforced} \ {\sf Concrete}$

CICO: Constrained Input Constrained Output Definition Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t. The **CICO** problem is: Finding $X, Y \in \mathbb{F}_q^{t-u}$ s.t. $P(X, 0^u) = (Y, 0^u)$.

when t = 3, u = 1.

Solving Systems:

- ★ Univariate systems: Find the roots of a polynomial $P \in \mathbb{F}_q[X]$: $\widetilde{\mathcal{O}}(d)$, $d = \deg(P)$
- * **Multivariate systems**: Compute a Gröbner basis from polynomial equations in $\mathbb{F}_q[X_1, \ldots, X_n]$: $P_{j,j=1,\ldots,n}(X_1, \ldots, X_n) = 0$: $\widetilde{\mathcal{O}}(d^3)$

 \Rightarrow build univariate systems when possible!

ricks for SPN pplied to POSEIDON and Rescue-Prime

Trick for SPN

Let $P = P_0 \circ P_1$ be a permutation of \mathbb{F}_p^3 and suppose

 $\exists \ V, G \in \mathbb{F}_p^3, \quad \text{ s.t. } \forall \ X \in \mathbb{F}_p, \quad P_0^{-1}(XV + G) = (*, *, 0) \ .$

Approach used against **POSEIDON** and Rescue-Prime

Fricks for SPN Applied to POSEIDON and Rescue-Prime

POSEIDON

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, *USENIX 2021*

- \star SPN construction:
 - * S-Box layer: $x \mapsto x^{\alpha}$, ($\alpha = 3$)
 - ★ Linear layer: MDS
 - * Round constants addition: AddC
- * Number of rounds (for challenges):

$$R = 2 \times Rf + RP$$

= 8 + (from 3 to 24).

Fricks for SPN Applied to POSEIDON and Rescue–Prime

POSEIDON

$$\begin{cases} V &= (A^3, B^3, 0) , \\ G &= (0, 0, g) , \end{cases}$$

with

$$\begin{cases} B &= -\frac{\alpha_{0,2}}{\alpha_{1,2}}A \\ g &= \left(\frac{1}{\alpha_{2,2}} \left(\alpha_{0,2}c_0^1 + \alpha_{1,2}c_1^1\right) + c_2^1 + (c_2^0)^3\right)^3 \ . \end{cases}$$

R	Designers claims	Ethereum estimations	d	complexity
$8+3 \\ 8+8 \\ 8+13 \\ 8+19$	2^{17} 2^{25} 2^{33} 2^{42}	2 ⁴⁵ 2 ⁵³ 2 ⁶¹ 2 ⁶⁹	3^9 3^{14} 3^{19} 3^{25}	2 ²⁶ 2 ³⁵ 2 ⁴⁴ 2 ⁵⁴
8+24	2 ⁵⁰	2 ⁷⁷	3 ³⁰	2 ⁶²

Complexity of our attack against POSEIDON.

Fricks for SPN Applied to POSEIDON and Rescue-Prime

Rescue-Prime

- A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, *ToSC 2020*
 - \star SPN construction:
 - * S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1/\alpha}$, $(\alpha = 3)$
 - ★ Linear layer: MDS
 - ★ Round constants addition: AddC
 - * Number of rounds (for challenges):

R = from 4 to 8 (2 S-boxes per round).

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, *ToSC 2020*

- \star SPN construction:
 - * S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1/\alpha}$, $(\alpha = 3)$
 - ★ Linear layer: MDS
 - * Round constants addition: AddC
- * Number of rounds (for challenges):

R = from 4 to 8 (2 S-boxes per round). for SPN I to POSEIDON and Rescue-Prime

> Example of parameters p = 18446744073709551557 $\simeq 2^{64}$ $\alpha = 3$ $\alpha^{-1} = 12297829382473034371$

Fricks for SPN Applied to POSEIDON and Rescue-Prime

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, *ToSC 2020*

- \star SPN construction:
 - * S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1/\alpha}$, $(\alpha = 3)$
 - ★ Linear layer: MDS
 - ★ Round constants addition: AddC
- * Number of rounds (for challenges):

R = from 4 to 8 (2 S-boxes per round).

Fricks for SPN Applied to POSEIDON and Rescue-Prime

Rescue-Prime

$$\begin{cases} V = (A^3, B^3, 0) , \\ G = (0, 0, g) , \end{cases}$$

with

$$\begin{cases} B = -\frac{\alpha_{0,2}}{\alpha_{1,2}}A \\ g = \left(\frac{1}{\alpha_{2,2}} \left(\alpha_{0,2}c_0^0 + \alpha_{1,2}c_1^0\right) + c_2^0\right)^{1/3} \end{cases}$$

R	т	Designers claims	Ethereum estimations	d	complexity
4	3	2 ³⁶	2 ^{37.5}	3 ⁹	2 ⁴³
6	2	2 ⁴⁰	$2^{37.5}$	3^{11}	2 ⁵³
7	2	2 ⁴⁸	2 ^{43.5}	3 ¹³	2 ⁶²
5	3	2 ⁴⁸	2 ⁴⁵	3 ¹²	2 ⁵⁷
8	2	2 ⁵⁶	2 ^{49.5}	3 ¹⁵	272

Complexity of our attack against Rescue.

Algebraic Attacks against some AOP

- \star consider as many variants of encoding as possible
- \star build univariate instead of multivariate systems
- \star start (and end) with a linear layer
- \star 2 rounds can be skipped with the trick

CCZ-equivalence New S-box: Flystel New mode: Jive

2 Algebraic Degree of MiMC

- Exact degree
- Integral attacks

3 Algebraic Attacks

- Tricks for SPN
- Applied to **POSEIDON** and Rescue-Prime

4 Anemoi

- CCZ-equivalence
- New S-box: Flystel
- New mode: Jive

CCZ-equivalence New S-box: Flystel New mode: Jive

Why Anemoi?

\star Anemoi

Family of ZK-friendly Hash functions

CCZ-equivalence New S-box: Flystel New mode: Jive

Why Anemoi?

\star Anemoi

Family of ZK-friendly Hash functions

\downarrow

* Anemoi

Greek gods of winds

CCZ-equivalence New S-box: Flystel New mode: Jive

Our approach

Need: verification using few multiplications.

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 \rightarrow *E*: low degree

$$y == E(x) \longrightarrow E$$
: low degree

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $\rightsquigarrow E$: low degree

$$y == E(x) \longrightarrow E$$
: low degree

 \Rightarrow vulnerability to some attacks?

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x) \longrightarrow E$: low degree

$$y == E(x) \longrightarrow E$$
: low degree

 \Rightarrow vulnerability to some attacks?

New approach:

using CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x) \longrightarrow E$: low degree

$$y == E(x) \longrightarrow E$$
: low degree

 \Rightarrow vulnerability to some attacks?

New approach:

using CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

$$v == G(u)$$

 \rightsquigarrow *G*: low degree

CCZ-equivalence New S-box: Flystel New mode: Jive

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

CCZ-equivalence New S-box: Flystel New mode: Jive

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_q \right\} = \mathcal{A}(\Gamma_{\boldsymbol{G}}) = \left\{ \mathcal{A}\left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_q \right\},\$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

 \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.

CCZ-equivalence New S-box: Flystel New mode: Jive

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

 \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.

 \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.

CCZ-equivalence New S-box: Flystel New mode: Jive

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.
- * Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$
CCZ-equivalence New S-box: Flystel New mode: Jive

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.
- ★ Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is not preserved.

CCZ-equivalence New S-box: Flystel New mode: Jive

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

$$F: \mathbb{F}_q \to \mathbb{F}_q$$
 and $G: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star **F** and **G** have the same differential properties: $\delta_F = \delta_G$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.
- * Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

CCZ-equivalence New S-box: Flystel New mode: Jive

The Flystel

 $\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \texttt{Flystel}$

A 3-round Feistel-network with

 $Q_\gamma: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_\delta: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

CCZ-equivalence **New S-box: Flystel** New mode: Jive

The Flystel

$$\begin{aligned} \mathsf{\Gamma}_{\mathcal{H}} &= \left\{ ((x, y), \ \mathcal{H}((x, y))) \mid (x, y) \in \mathbb{F}_q^2 \right\} \\ &= \mathcal{A}\left(\left\{ ((v, y), \ \mathcal{V}((v, y))) \mid (v, y) \in \mathbb{F}_q^2 \right\} \right) \\ &= \mathcal{A}(\mathsf{\Gamma}_{\mathcal{V}}) \end{aligned}$$

Open Flystel \mathcal{H} .

Closed Flystel \mathcal{V} .

Anemoi

Advantage of CCZ-equivalence

★ High Degree Evaluation.

Closed Flystel V.

CCZ-equivalence **New S-box: Flyste** New mode: Jive

Advantage of CCZ-equivalence

- $\star\,$ High Degree Evaluation.
- $\star\,$ Low Cost Verification.

$$(u, v) == \mathcal{H}(x, y) \Leftrightarrow (x, u) == \mathcal{V}(y, v)$$

 $\textit{Open Flystel } \mathcal{H}.$

Closed Flystel \mathcal{V} .

Flystel in \mathbb{F}_{2^n}

$$\mathcal{H}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) \mapsto & \left(x + \beta y^3 + \gamma + \beta \left(y + (x + \beta y^3 + \gamma)^{1/3}\right)^3 + \delta \right., \\ & y + (x + \beta y^3 - \gamma)^{1/3} \\ \end{array} \right). \qquad \mathcal{V}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) & \mapsto \left((y + v)^3 + \beta y^3 + \gamma \right., \\ & (y + v)^3 + \beta v^3 + \delta \\ \end{array} \right), \end{cases}$$

Open Flystel₂.

Closed Flystel₂.

CCZ-equivalence **New S-box: Flystel** New mode: Jive

Properties of Flystel in \mathbb{F}_{2^n}

Degenerated Butterfly.

First introduced by [Perrin et al. 2016].

Well-studied butterfly.

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

* Differential properties

* Flystel₂:
$$\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$$

- ★ Linear properties
 - * Flystel₂: $\mathcal{W}_{\mathcal{H}} = \mathcal{W}_{\mathcal{V}} = 2^{n+1}$
- ⋆ Algebraic degree
 - * Open Flystel₂: $\deg_{\mathcal{H}} = n$
 - \star Closed Flystel_2: $deg_{\mathcal{V}}=2$

Flystel in \mathbb{F}_p

$$\mathcal{H}: \begin{cases} \mathbb{F}_{p} \times \mathbb{F}_{p} & \to \mathbb{F}_{p} \times \mathbb{F}_{p} \\ (x,y) & \mapsto \left(x - \beta y^{2} - \gamma + \beta \left(y - (x - \beta y^{2} - \gamma)^{1/\alpha}\right)^{2} + \delta \right., \quad \mathcal{V}: \begin{cases} \mathbb{F}_{p} \times \mathbb{F}_{p} & \to \mathbb{F}_{p} \times \mathbb{F}_{p} \\ (y,v) & \mapsto \left((y - v)^{\alpha} + \beta y^{2} + \gamma \right., \\ (v - y)^{\alpha} + \beta v^{2} + \delta \right). \end{cases}$$

usually $\alpha = 3$ or 5.

Open Flystel_p.

Closed Flystel_p.

CCZ-equivalence New S-box: Flystel New mode: Jive

Properties of Flystel in \mathbb{F}_{p_1}

★ Differential properties Flystel_p has a differential uniformity equals to $\alpha - 1$.

 $DDT of Flystel_p$.

CCZ-equivalence **New S-box: Flyste]** New mode: Jive

Properties of Flystel in \mathbb{F}_p

★ Linear properties

 $\mathcal{W} \leq p \log p$?

Conjecture for the linearity.

CCZ-equivalence New S-box: Flystel New mode: Jive

Properties of Flystel in \mathbb{F}_p

★ Linear properties

 $\mathcal{W} \leq p \log p$?

(a) when p = 11 and $\alpha = 3$.

(c) when p = 17 and $\alpha = 3$.

LAT of Flystel_p.

CCZ-equivalence New S-box: Flystel New mode: Jive

The SPN Structure

The internal state of Anemoi and its basic operations.

<i>x</i> 0	<i>x</i> ₁	 $x_{\ell-1}$
<i>y</i> 0	<i>y</i> 1	 $y_{\ell-1}$

(a) Internal state

(b) The diffusion layer \mathcal{M} .

(c) The PHT \mathcal{P} .

(d) The S-box layer S.

(e) The constant addition \mathcal{A} .

CCZ-equivalence New S-box: Flystel New mode: Jive

The SPN Structure

CCZ-equivalence New S-box: Flystel New mode: Jive

•

Number of rounds

$$\mathtt{Anemoi}_{q,\alpha,\ell} = \mathcal{M} \circ \mathsf{R}_{n_r-1} \circ \ldots \circ \mathsf{R}_0$$

 \Rightarrow Choosing the number of rounds:

$$n_r \geq \max\left\{8, \underbrace{\min(5, 1+\ell)}_{\text{security margin}} + \underbrace{2 + \min\left\{r \in \mathbb{N} \mid \binom{4\ell r + \kappa_{\alpha}}{2\ell r}^2 \geq 2^s\right\}}_{\text{to prevent algebraic attacks}}\right\}$$

$\alpha (\kappa_{\alpha})$	3 (1)	5 (2)	7 (4)	11 (9)
$\ell = 1$	21	21	20	19
ℓ = 2	14	14	13	13
ℓ = 3	12	12	12	11
ℓ = 4	12	12	11	11

Number of Rounds of Anemoi (s = 128).

CCZ-equivalence New S-box: Flystel New mode: Jive

New Mode: Jive

- ★ Hash function (random oracle):
 - ★ input: arbitrary length
 - \star ouput: fixed length

CCZ-equivalence New S-box: Flystel New mode: Jive

New Mode: Jive

- ★ Hash function (random oracle):
 - \star input: arbitrary length
 - \star ouput: fixed length

Dedicated mode \Rightarrow 2 words in 1

- * Compression function (Merkle-tree):
 - \star input: fixed length
 - \star output: (input length) /2

 $(x, y) \mapsto x + y + u + v$.

CCZ-equivalence New S-box: Flystel New mode: Jive

New Mode: Jive

- ★ Hash function (random oracle):
 - ★ input: arbitrary length
 - ★ ouput: fixed length
- Dedicated mode \Rightarrow b words in 1

$$\operatorname{Jive}_b(P): \begin{cases} (\mathbb{F}_q^m)^b & \to \mathbb{F}_q^m \\ (x_0,...,x_{b-1}) & \mapsto \sum_{i=0}^{b-1} (x_i + P_i(x_0,...,x_{b-1})) \end{cases}.$$

- * Compression function (Merkle-tree):
 - ★ input: fixed length
 - * output: (input length) /b

CCZ-equivalence New S-box: Flystel New mode: Jive

-

-

_

Some Benchmarks

	т	RP	Poseidon	Griffin	Anemoi
R1CS	2	208	198	-	76
	4	224	232	112	96
	6	216	264	-	120
	8	256	296	176	160
Plonk	2	312	380	-	189
	4	560	1336	260	308
	6	756	3024	-	444
	8	1152	5448	574	624
AIR	2	156	300	-	126
	4	168	348	168	168
	6	162	396	-	216
	8	192	480	264	288

	т	RP	Poseidon	Griffin	Anemoi
R1CS	2	240	216	-	95
	4	264	264	110	120
	6	288	315	-	150
	8	384	363	162	200
Plonk	2	320	344	-	210
	4	528	1032	222	336
	6	768	2265	-	480
	8	1280	4003	492	672
AIR	2	200	360	-	210
	4	220	440	220	280
	6	240	540	-	360
	8	320	640	360	480

(a) when $\alpha = 3$

(b) when $\alpha = 5$

Constraint comparison for Rescue-Prime, POSEIDON, GRIFFIN and Anemoi (s = 128)

for standard arithmetization, without optimization.

CCZ-equivalence New S-box: Flystel New mode: Jive

Take-Away

Anemoi

- \star A new family of ZK-friendly hash functions
- * Contributions of fundamental interest:
 - * New S-box: Flystel
 - \star New mode: Jive
- \star Identify a link between AO and CCZ-equivalence

CCZ-equivalence New S-box: Flystel New mode: Jive

Conclusions

- \star A better understanding of the algebraic degree of MIMC_3
 - More details on doi.org/10.1007/s10623-022-01136-x (or eprint.iacr.org/2022/366)
- \star Practical attacks against AO hash functions
 - More details on doi.org/10.46586/tosc.v2022.i3.73-101
- \star Anemoi: a new family of ZK-friendly hash functions
 - More details on eprint.iacr.org/2022/840

CCZ-equivalence New S-box: Flystel New mode: Jive

Conclusions

- \star A better understanding of the algebraic degree of MIMC_3
 - More details on doi.org/10.1007/s10623-022-01136-x (or eprint.iacr.org/2022/366)
- \star Practical attacks against AO hash functions
 - More details on doi.org/10.46586/tosc.v2022.i3.73-101
- \star Anemoi: a new family of ZK-friendly hash functions
 - More details on eprint.iacr.org/2022/840

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

