Arithmetization-Oriented symmetric primitives: from Cryptanalysis to Design.

Clémence Bouvier 1,2

including joint works with Pierre Briaud^{1,2}, Anne Canteaut², Pyrros Chaidos³, Léo Perrin², Robin Salen⁴, Vesselin Velichkov^{5,6} and Danny Willems^{7,8}

¹Sorbonne Université,

²Inria Paris,

³National & Kapodistrian University of Athens, ⁴Toposware Inc., Boston, ⁵University of Edinburgh, ⁶Clearmatics, London, ⁷Nomadic Labs, Paris, ⁸Inria and LIX, CNRS

June 14th, 2023

clearmαtics

Arithmetization-Oriented symmetric primitives: from Cryptanalysis to Design.

Emerging uses in symmetric cryptography

2 Algebraic Degree of MiMC

- Missing exponents
- Bounding the degree
- Integral attacks

3 Anemoi

- CCZ-equivalence
- New S-box: Flystel

A new environment

"Usual" case

★ Field size:

 \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).

* Operations: logical gates/CPU instructions

Arithmetization-friendly

- $\star \ \mbox{Field size:} \\ \mathbb{F}_q, \ \mbox{with} \ q \in \{2^n,p\}, p \simeq 2^n, \ n \geq 64$
- Operations: large finite-field arithmetic

A new environment

"Usual" case

- * Field size: \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly \star Field size:
 \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$ \star Operations:
large finite-field arithmetic

 $\mathbb{F}_{p}=\mathbb{Z}/p\mathbb{Z},$ with p given by the order of some elliptic curves

Examples: * Curve BLS12-381 $\log_2 p = 255$ p = 52435875175126190479447740508185965837690552500527637822603658699938581184513 * Curve BLS12-377 $\log_2 p = 253$

p = 8444461749428370424248824938781546531375899335154063827935233455917409239041

A new environment

"Usual" case

- * Field size: \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- Operations: logical gates/CPU instructions

Arithmetization-friendly

- * Field size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$
- Operations: large finite-field arithmetic

New properties

"Usual" case y ← E(x) ★ Optimized for: implementation in software/hardware

Arithmetization-friendly

$$y \leftarrow E(x)$$
 and $y == E(x)$

 Optimized for: integration within advanced protocols

A new environment

Emerging uses in symmetric cryptography

2 Algebraic Degree of MiMC

- Missing exponents
- Bounding the degree
- Integral attacks

3 Anemoi

- CCZ-equivalence
- New S-box: Flystel

The block cipher MiMC

- $\star\,$ Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- ★ Construction of MiMC₃ [Albrecht et al., Asiacrypt16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

Missing exponents Bounding the degree Integral attacks

The block cipher MiMC

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- * Construction of MiMC₃ [Albrecht et al., Asiacrypt16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$R := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

Missing exponents Bounding the degree Integral attacks

The block cipher MiMC

- \star Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- * Construction of MiMC₃ [Albrecht et al., Asiacrypt16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - \star decryption : replacing x^3 by x^s where $s=(2^{n+1}-1)/3$

$$R := \lceil n \log_3 2 \rceil$$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

-

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic Degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^{a}(f) = \max \left\{ \operatorname{hw}(u) : u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0 \right\},$$

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic Degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^{\mathsf{a}}(f) = \max\left\{ \operatorname{hw}\left(u\right) : u \in \mathbb{F}_{2}^{n}, \mathsf{a}_{u} \neq 0 \right\} \,,$$

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, then

$$\deg^a(F) = \max\{\deg^a(f_i), \ 1 \le i \le m\} \ .$$

where $F(x) = (f_1(x), \dots, f_m(x))$.

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2, \; x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the Algebraic Normal Form (ANF) of f.

Example: $F: \mathbb{F}_{2^{11}} \to \mathbb{F}_{2^{11}}, x \mapsto x^{3}$ $F: \mathbb{F}_{2^{1}}^{11} \to \mathbb{F}_{2^{1}}^{11}, (x_{0}, \dots, x_{10}) \mapsto$ $(x_{0}x_{10} + x_{0} + x_{1}x_{5} + x_{1}y_{9} + x_{2}x_{7} + x_{2}y_{9} + x_{2}x_{10} + x_{3}x_{4} + x_{3}x_{5} + x_{4}x_{8} + x_{4}y_{9} + x_{5}x_{10} + x_{6}x_{7} + x_{6}x_{10} + x_{7}x_{8} + x_{9}x_{10}, x_{9}x_{1} + x_{9}x_{5} + x_{2}x_{8} + x_{3}y_{9} + x_{2}x_{1} + x_{2}x_{5} + x_{4}x_{8} + x_{4}x_{9} + x_{5}x_{10} + x_{6}x_{7} + x_{6}x_{10} + x_{7}x_{8} + x_{9}x_{10}, x_{9}x_{1} + x_{9}x_{5} + x_{2}x_{8} + x_{3}x_{9} + x_{3}x_{1} + x_{4}x_{5} + x_{4}x_{8} + x_{4}x_{9} + x_{5}x_{10} + x_{6}x_{7} + x_{6}x_{1} + x_{7}x_{8} + x_{9}x_{10}, x_{9}x_{1} + x_{9}x_{2} + x_{9}x_{10} + x_{1}x_{5} + x_{1}x_{6} + x_{1}x_{9} + x_{2}x_{7} + x_{3}x_{4} + x_{3}x_{7} + x_{4}x_{5} + x_{4}x_{9} + x_{5}x_{10} + x_{6}x_{7} + x_{6}x_{8} + x_{6}x_{9} + x_{7}x_{10} + x_{8} + x_{9}x_{10}, x_{9}x_{1} + x_{9}x_{2} + x_{9}x_{1}x_{1} + x_{2}x_{5} + x_{2}x_{6} + x_{2}x_{8} + x_{2}x_{1} + x_{3}x_{7} + x_{3}x_{8} + x_{3}x_{9} + x_{3}x_{1} + x_{4}x_{5} + x_{4}x_{6} + x_{4} + x_{5}x_{8} + x_{6}x_{8} + x_{6}x_{9} + x_{7}x_{1} + x_{8} + x_{9}x_{1}x_{9} + x_{1}x_{9} + x_{1}x_{1} + x_{2}x_{5} + x_{2}x_{1} + x_{2}x_{1}$

Missing exponents Bounding the degree Integral attacks

Algebraic degree - 2nd definition

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$,

there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$${\mathcal F}(x)=\sum_{i=0}^{2^n-1}b_ix^i; b_i\in {\mathbb F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\operatorname{hw}(i), \ 0 \leq i < 2^{n}, \text{ and } b_{i} \neq 0\}$$

Missing exponents Bounding the degree Integral attacks

Algebraic degree - 2nd definition

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$,

there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$${\mathcal F}(x)=\sum_{i=0}^{2^n-1}b_ix^i; b_i\in {\mathbb F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\operatorname{hw}(i), \ 0 \leq i < 2^{n}, \text{ and } b_{i} \neq 0\}$$

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg^a(F) \le n-1$$

Missing exponents Bounding the degree Integral attacks

Integral attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Missing exponents Bounding the degree Integral attacks

Integral attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(\mathcal{F}) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- * Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- * Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$
 - $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$

* Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $[r \log_2 3]$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$ $3 = [11]_2$ * Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{ \exists j \bmod (2^n - 1) \text{ where } j \leq i, \ i \in \mathcal{E}_{r-1} \}$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{ 3j \mod (2^n - 1) \text{ where } j \leq i, \ i \in \mathcal{E}_{r-1} \}$$

Example:

$$\mathcal{P}_{1}(x) = x^{3} \implies \mathcal{E}_{1} = \{3\}.$$

$$3 = [11]_{2} \stackrel{\simeq}{\longrightarrow} \begin{cases} [00]_{2} = 0 & \stackrel{\times 3}{\longrightarrow} & 0\\ [01]_{2} = 1 & \stackrel{\times 3}{\longrightarrow} & 3\\ [10]_{2} = 2 & \stackrel{\times 3}{\longrightarrow} & 6\\ [11]_{2} = 3 & \stackrel{\times 3}{\longrightarrow} & 9 \end{cases}$$

$$\mathcal{E}_{2} = \{0, 3, 6, 9\},$$

$$\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}.$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow \text{No exponent } 2^{2k} - 1$

$$\begin{array}{ll} \mathsf{Example:} \ 63 = 2^{2 \times 3} - 1 \notin \mathcal{E}_4 = \{0, 3, \dots, 81\} \\ \forall e \in \mathcal{E}_4 \setminus \{63\}, wt(e) \leq 4 \end{array} \Rightarrow B_3^4 \leq 6 = wt(63) \\ \Rightarrow B_3^4 \leq 4 \end{array}$$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

 $B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

 $B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$

And a lower bound if $3^r < 2^n - 1$:

 $B_3^r \geq \max\{wt(3^i), i \leq r\}$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

 $B_3^r \leq 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$

And a lower bound if $3^r < 2^n - 1$:

```
B_3^r \geq \max\{wt(3^i), i \leq r\}
```

Upper bound reached for \sim 16265 rounds

Plateau

\Rightarrow plateau when $\lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $\lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$

Algebraic degree observed for n = 31.

If we have a plateau

$$B_3^r=B_3^{r+1},$$

Then the next one is

$$B_3^{r+4} = B_3^{r+5}$$
 or $B_3^{r+5} = B_3^{r+6}$.

Missing exponents Bounding the degree Integral attacks

Music in MIMC₃

→ Patterns in sequence $(\lfloor r \log_2 3 \rfloor)_{r>0}$:

 \Rightarrow denominators of semiconvergents of $\log_2(3)\simeq 1.5849625$

 $\mathfrak{D} = \{ \texttt{1}, \texttt{2}, \texttt{3}, \texttt{5}, \texttt{7}, \texttt{12}, \texttt{17}, \texttt{29}, \texttt{41}, \texttt{53}, \texttt{94}, \texttt{147}, \texttt{200}, \texttt{253}, \texttt{306}, \texttt{359}, \ldots \} \ ,$

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

Music theory:

- perfect octave 2:1
- perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad 7 \text{ octaves } \sim 12 \text{ fifths}$$

Missing exponents Bounding the degree Integral attacks

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

Missing exponents Bounding the degree Integral attacks

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

For n = 129, MIMC₃ = 82 rounds

Round	ds T	ime	Data	Source
80/8	2 2 ¹²	⁸ XOR	2 ¹²⁸	[EGL+20]
81/8	2 2 ¹²	⁸ XOR	2 ¹²⁸	New
80/8	2 2 ¹²	⁵ XOR	2 ¹²⁵	New

Secret-key distinguishers (n = 129)

Take-Away

Algebraic Degree of MiMC

- * guarantee on the degree of MIMC₃
 - $\star\,$ upper bound on the algebraic degree

 $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

- \star bound tight, up to 16265 rounds
- \star minimal complexity for higher-order differential attack

Joint work with Anne Canteaut and Léo Perrin Published in Designs, Codes and Cryptography (2023) More details on eprint.iacr.org/2022/366 Emerging uses in symmetric cryptography

2 Algebraic Degree of MiMC

- Missing exponents
- Bounding the degree
- Integral attacks

- CCZ-equivalence
- New S-box: Flystel

Why Anemoi?

\star Anemoi

Family of ZK-friendly Hash functions

Why Anemoi?

\star Anemoi

Family of ZK-friendly Hash functions

 \downarrow

\star Anemoi

Greek gods of winds

Need: verification using few multiplications.

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 \rightsquigarrow *E*: low degree

$$y == E(x) \longrightarrow E$$
: low degree

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

$$y == E(x) \longrightarrow E$$
: low degree

 \Rightarrow vulnerability to some attacks?

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x)$ $\rightsquigarrow E$: low degree y == E(x) $\rightsquigarrow E$: low degree

 \Rightarrow vulnerability to some attacks?

New approach:

using CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x) \longrightarrow E$: low degree $y == E(x) \longrightarrow E$: low degree

 \Rightarrow vulnerability to some attacks?

New approach:

using CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

$$v == G(u) \quad \rightsquigarrow G: \text{ low degree}$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_q \right\} = \mathcal{A}(\Gamma_{\boldsymbol{G}}) = \left\{ \mathcal{A}\left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_q \right\},\$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

 \star $\it F$ and $\it G$ have the same differential properties: $\delta_{\it F}~=~\delta_{\it G}$.

Differential uniformity: maximum value of the DDT (Difference Distribution Table)

$$\delta_{F} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{q}^{m}, F(x+a) - F(x) = b\}$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.

Linearity: maximum value of the LAT (Linear Approximation Table)

$$\text{in } \mathbb{F}_{2^n}: \ \mathcal{W}_F = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_{2^n}^m} (-1)^{a \cdot x + b \cdot F(x)} \right| \qquad \text{in } \mathbb{F}_p: \ \mathcal{W}_F = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_p^m} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, F(x) \rangle)}{p} \right) \right|$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{\boldsymbol{G}}) = \left\{ \mathcal{A}\left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.
- * Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{\boldsymbol{G}}) = \left\{ \mathcal{A}\left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_{q} \right\},\$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star $\it F$ and $\it G$ have the same differential properties: $\delta_{\it F}~=~\delta_{\it G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.
- ★ Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{\boldsymbol{G}}) = \left\{ \mathcal{A}\left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star $\it F$ and $\it G$ have the same differential properties: $\delta_{\it F}~=~\delta_{\it G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.
- * Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

The Flystel

 $\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \texttt{Flystel}$

A 3-round Feistel-network with

 $Q_\gamma: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_\delta: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

CZ-equivalence lew S-box: Flystel

The Flystel

$$\begin{aligned} \mathsf{\Gamma}_{\mathcal{H}} &= \left\{ ((x, y), \ \mathcal{H}((x, y))) \mid (x, y) \in \mathbb{F}_q^2 \right\} \\ &= \mathcal{A}\left(\left\{ ((v, y), \ \mathcal{V}((v, y))) \mid (v, y) \in \mathbb{F}_q^2 \right\} \right) \\ &= \mathcal{A}(\mathsf{\Gamma}_{\mathcal{V}}) \end{aligned}$$

High-degree permutation

 $\mathsf{Closed}\; \mathtt{Flystel}\; \mathcal{V}.$

Low-degree function

$$\begin{cases} u = x - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(x - Q_{\gamma}(y)) - y) \\ y = E^{-1}(x - Q_{\gamma}(y)) - y \end{cases}$$

 $\begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$

CCZ-equivalence New S-box: Flystel

Advantage of CCZ-equivalence

* High Degree Evaluation.

Open Flystel \mathcal{H} .

High-degree permutation

Closed Flystel \mathcal{V} .

Low-degree function

$$\begin{cases} u = x - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(x - Q_{\gamma}(y)) - y) \\ y = E^{-1}(x - Q_{\gamma}(y)) - y \end{cases} \qquad \begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

CCZ-equivalence New S-box: Flystel

Advantage of CCZ-equivalence

 $\star\,$ High Degree Evaluation.

- $\begin{array}{l} p & = 4002409555221667393417789825735904156556882819939007885332 \\ & 058136124031650490837864442687629129015664037894272559787 \\ \alpha & = 5 \\ \alpha^{-1} & = 3201927644177333914734231860588723325245506255951206308265 \\ \end{array}$
 - 646508899225320392670291554150103303212531230315418047829

High-degree permutation

Closed Flystel \mathcal{V} .

Low-degree function

$$\begin{cases} u = x - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(x - Q_{\gamma}(y)) - y) \\ y = E^{-1}(x - Q_{\gamma}(y)) - y \end{cases} \qquad \begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

Advantage of CCZ-equivalence

- $\star\,$ High Degree Evaluation.
- $\star\,$ Low Cost Verification.

$$(u,v) == \mathcal{H}(x,y) \Leftrightarrow (x,u) == \mathcal{V}(y,v)$$

High-degree permutation

Closed Flystel \mathcal{V} .

Low-degree function

$$\begin{cases} u = x - Q_{\gamma}(y) + Q_{\delta}(E^{-1}(x - Q_{\gamma}(y)) - y) \\ y = E^{-1}(x - Q_{\gamma}(y)) - y \end{cases} \qquad \begin{cases} x = Q_{\gamma}(y) + E(y - v) \\ u = Q_{\delta}(v) + E(y - v) \end{cases}$$

CZ-equivalence lew S-box: Flystel

Flystel in \mathbb{F}_{2^n}

$$\mathcal{H}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) \mapsto & \left(x + \beta y^3 + \gamma + \beta \left(y + (x + \beta y^3 + \gamma)^{1/3}\right)^3 + \delta \right., \\ & y + (x + \beta y^3 - \gamma)^{1/3} \right). \end{cases} \mathcal{V}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} & \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) & \mapsto \left((y + v)^3 + \beta y^3 + \gamma \right., \\ & (y + v)^3 + \beta v^3 + \delta \right). \end{cases}$$

Open Flystel₂.

Closed Flystel₂.

Properties of Flystel in \mathbb{F}_{2^n}

Degenerated Butterfly.

First introduced by [Perrin et al. 2016].

Well-studied butterfly.

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

- * Differential properties
 - * Flystel₂: $\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$
- ★ Linear properties
 - * Flystel₂: $\mathcal{W}_{\mathcal{H}} = \mathcal{W}_{\mathcal{V}} = 2^{n+1}$
- ★ Algebraic degree
 - * Open Flystel₂: $\deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $\deg_{\mathcal{V}} = 2$

CZ-equivalence lew S-box: Flystel

Flystel in \mathbb{F}_p

$$\mathcal{H}: \begin{cases} \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} & \to \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} \\ (x,y) & \mapsto \left(x - \beta y^{2} - \gamma + \beta \left(y - (x - \beta y^{2} - \gamma)^{1/\alpha}\right)^{2} + \delta \right., \quad \mathcal{V}: \begin{cases} \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} & \to \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} \\ (y,v) & \mapsto \left((y - v)^{\alpha} + \beta y^{2} + \gamma \right., \\ (v - y)^{\alpha} + \beta v^{2} + \delta \right). \end{cases}$$

usually $\alpha = 3$ or 5.

Open Flystel_p.

Closed Flystelp.

CZ-equivalence lew S-box: Flystel

Properties of Flystel in \mathbb{F}_p

★ Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| = \alpha - 1$$

1

.

Properties of Flystel in \mathbb{F}_p

★ Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

(b) For the smallest α .

Conjecture for the linearity.

.

Properties of Flystel in \mathbb{F}_{p_1}

★ Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \le p \log p ?$$

(a) when p = 11 and $\alpha = 3$.

(b) when p = 13 and $\alpha = 5$.

(c) when p = 17 and $\alpha = 3$.

LAT of $Flystel_p$.

The SPN Structure

The internal state of Anemoi and its basic operations.

<i>x</i> 0	<i>x</i> ₁	 $x_{\ell-1}$
<i>y</i> 0	<i>y</i> 1	 <i>Y</i> _{<i>ℓ</i>-1}

$$\longleftrightarrow \mathcal{M}_x \longrightarrow$$

$$\longleftrightarrow \mathcal{M}_y = \mathcal{M}_x \circ \rho \longrightarrow$$

(a) Internal state

(b) The diffusion layer \mathcal{M} .

(c) The PHT \mathcal{P} .

$\begin{array}{c c} \uparrow & \uparrow \\ \mathcal{H} & \mathcal{H} \\ \downarrow & \downarrow \end{array}$		$\begin{array}{c} \uparrow \\ \mathcal{H} \\ \downarrow \end{array}$
--	--	--

(d) The S-box layer S.

(e) The constant addition \mathcal{A} .

CCZ-equivalence New S-box: Flystel

The SPN Structure

Number of rounds

$$\mathtt{Anemoi}_{q,\alpha,\ell} = \mathcal{M} \circ \mathsf{R}_{n_r-1} \circ \ldots \circ \mathsf{R}_0$$

 \Rightarrow Choosing the number of rounds:

$$n_r \geq \max \left\{ 8 \ , \ \underbrace{\min(5, 1+\ell)}_{ ext{security margin}} + 2 + \min \left\{ r \in \mathbb{N} \ \left| \ \begin{pmatrix} 4\ell r + \kappa_{lpha} \\ 2\ell r \end{pmatrix}^2 \geq 2^s
ight\}
ight\} \ .$$

$\alpha (\kappa_{\alpha})$	3 (1)	5 (2)	7 (4)	11 (9)
$\ell = 1$	21	21	20	19
ℓ = 2	14	14	13	13
ℓ = 3	12	12	12	11
<i>ℓ</i> = 4	12	12	11	11

Number of Rounds of Anemoi (s = 128).

Some Benchmarks

	т	RP	Poseidon	Griffin	Anemoi
R1CS	2	208	198	-	76
	4	224	232	112	96
	6	216	264	-	120
	8	256	296	176	160
Plonk	2	312	380	-	189
	4	560	1336	260	308
	6	756	3024	-	444
	8	1152	5448	574	624
AIR	2	156	300	-	126
	4	168	348	168	168
	6	162	396	-	216
	8	192	480	264	288

	т	RP	POSEIDON	GRIFFIN	Anemoi
R1CS	2	240	216	-	95
	4	264	264	110	120
	6	288	315	-	150
	8	384	363	162	200
Plonk	2	320	344	-	210
	4	528	1032	222	336
	6	768	2265	-	480
	8	1280	4003	492	672
AIR	2	200	360	-	210
	4	220	440	220	280
	6	240	540	-	360
	8	320	640	360	480

 \sim

.

DD

(a) when $\alpha = 3$

(b) when $\alpha = 5$

Constraint comparison for Rescue-Prime, POSEIDON, GRIFFIN and Anemoi (s = 128)

for standard arithmetization, without optimization.

Take-Away

Anemoi

- * A new family of ZK-friendly hash functions
- * Contributions of fundamental interest:
 - \star New S-box: Flystel
- \star Identify a link between AO and CCZ-equivalence

Joint work with Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov and Danny Willems

To appear in CRYPTO 2023

More details on eprint.iacr.org/2022/840

Conclusions

- \star A better understanding of the algebraic degree of MIMC_3
 - \blacksquare More details on eprint.iacr.org/2022/366
- \star Anemoi: a new family of ZK-friendly hash functions
 - \square More details on eprint.iacr.org/2022/840

Conclusions

- \star A better understanding of the algebraic degree of MIMC_3
 - \blacksquare More details on eprint.iacr.org/2022/366
- \star Anemoi: a new family of ZK-friendly hash functions
 - More details on eprint.iacr.org/2022/840

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thanks for your attention!

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$

* if $k_r = 0 \mod 2$,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

Example:

$$123 = 2^7 - 5 = 2^{k_5} - 5 \qquad \in \mathcal{E}_5,$$

$$4089 = 2^{12} - 7 = 2^{k_8} - 7 \qquad \in \mathcal{E}_8.$$
Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$

* if $k_r = 0 \mod 2$,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

Example:

$$\begin{aligned} 123 &= 2^7 - 5 = 2^{k_5} - 5 &\in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 &\in \mathcal{E}_8. \end{aligned}$$

Constructing exponents.

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$

* if $k_r = 0 \mod 2$,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

Example:

$$\begin{aligned} 123 &= 2^7 - 5 = 2^{k_5} - 5 &\in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 &\in \mathcal{E}_8. \end{aligned}$$

Constructing exponents.

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F}$ with $\mathcal{F} = \{465, 571, \dots\}$: \star if $k_r = 1 \mod 2$, $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r$, \star if $k_r = 0 \mod 2$.

$$\omega_r=2^{k_r}-7\in \mathcal{E}_r.$$

Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$

Constructing exponents.

$$\exists \, \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \, \Rightarrow \, \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ $\star \text{ if } k_r = 0 \mod 2.$

$$\kappa_r = 0 \mod 2,$$

 $\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r.$

Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$

Constructing exponents.

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Covered rounds

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

Covered rounds

Idea of the proof:

- \star inductive proof: existence of "good" ℓ
- ⋆ MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

Sporadic Cases

Bound on ℓ

Observation

$$\forall 1 \leq t \leq 21, \; \forall x \in \mathbb{Z}/3^t\mathbb{Z}, \; \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \; \text{s.t.} \; x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \; \text{mod} \; 3^t \; .$$

Let: $k_r = \lfloor r \log_2 3 \rfloor$, $b_r = k_r \mod 2$ and

$$\mathcal{L}_r = \{\ell, \ 1 \le \ell < r, \ \text{s.t.} \ k_{r-\ell} = k_r - k_\ell \} \;.$$

Proposition

Let $r \ge 4$, and $\ell \in \mathcal{L}_r$ s.t.: * $\ell = 1, 2$, * $2 < \ell \le 22$ s.t. $k_r \ge k_\ell + 3\ell + b_r + 1$, and ℓ is even, or ℓ is odd, with $b_{r-\ell} = \overline{b_r}$; * $2 < \ell \le 22$ is odd s.t. $k_r \ge k_\ell + 3\ell + \overline{b_r} + 5$ Then $\omega_{r-\ell} \in \mathcal{E}_{r-\ell}$ implies that $\omega_r \in \mathcal{E}_r$.

MILP Solver

$$\mathsf{Mult}_3: \begin{cases} \mathbb{N}^{\mathbb{N}} & \to \mathbb{N}^{\mathbb{N}} \\ \{j_0, ..., j_{\ell-1}\} & \mapsto \{(3j_0) \bmod (2^n - 1), ..., (3j_{\ell-1}) \bmod (2^n - 1)\} \end{cases},$$

and

Let

$$\mathsf{Cover}: \begin{cases} \mathbb{N}^{\mathbb{N}} & \to \mathbb{N}^{\mathbb{N}} \\ \{j_0, ..., j_{\ell-1}\} & \mapsto \{k \preceq j_i, i \in \{0, ..., \ell-1\}\} \end{cases}$$

So that:

$$\mathcal{E}_r = \mathsf{Mult}_3(\mathsf{Cover}(\mathcal{E}_{r-1}))$$
 .

 \Rightarrow MILP problem solved using PySCIPOpt

existence of a solution
$$\Leftrightarrow \omega_r \in (\mathsf{Mult}_3 \circ \mathsf{Cover})^\ell(\{3^{r-\ell}\})$$

<u>With $\ell = 1$ </u>:

$$\mathbf{3^{r-1}} \in \mathcal{E}_{r-1} \longrightarrow \textbf{Cover} \longrightarrow \textbf{Mult}_{\mathbf{3}} \longrightarrow \mathbf{2^{k_r}} - \alpha_{b_r} \in \mathcal{E}_r$$

CCZ-equivalence New S-box: Flystel

MILP Solver (i rounds)

CCZ-equivalence New S-box: Flystel

MiMC₉ and form of coefficients

Example: coefficients of maximum weight exponent monomials at round 4

$$\begin{array}{ll} 27: c_1^{18} + c_3^2 & 57: c_1^8 \\ 30: c_1^{17} & 75: c_1^2 \\ 51: c_1^{10} & 78: c_1 \\ 54: c_1^9 + c_3 \end{array}$$

Other Quadratic functions

Proposition

Let \mathcal{E}_r be the set of exponents in the univariate form of MIMC₉[r]. Then:

 $\forall i \in \mathcal{E}_r, \ i \bmod 8 \in \{0, 1\}$.

Gold Functions: x^3 , x^9 , ...

Proposition

Let \mathcal{E}_r be the set of exponents in the univariate form of $\text{MIMC}_d[r]$, where $d = 2^j + 1$. Then:

 $\forall i \in \mathcal{E}_r, i \bmod 2^j \in \{0,1\}.$

Algebraic degree of $MiMC_3^{-1}$

Inverse: $F : x \mapsto x^s, s = (2^{n+1} - 1)/3 = [101..01]_2$

Some ideas studied

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$:

- * Round 1: $B_s^1 = wt(s) = (n+1)/2$
- * Round 2: $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3\\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3\\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

Next rounds: another plateau at n - 2?

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$

Affine-equivalence

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are affine equivalent if

$$F(x) = (B \circ G \circ A)(x) ,$$

where A, B are affine permutations.

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$F(x) = (B \circ G \circ A)(x) + C(x) ,$$

where A, B, C are affine functions with A, B permutations s.t.

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_q \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_q \right\},$$

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ (x, F(x)) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_{q} \right\}$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_q \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_q \right\},$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q \text{ and } G: \mathbb{F}_q \to \mathbb{F}_q \text{ are } \mathbf{CCZ-equivalent} \text{ if}$ $\Gamma_F = \left\{ (x, F(x)) \mid x \in \mathbb{F}_q \right\} = \mathcal{A}(\Gamma_G) = \left\{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_q \right\},$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

* EA-equivalence and CCZ-equivalence preserve differential and linear properties,

 $\delta_{\mathsf{G}}(a,b) = \delta_{\mathsf{F}}(\mathcal{L}^{-1}(a,b)) \text{ and } \mathcal{W}_{\mathsf{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \mathcal{W}_{\mathsf{F}}(\mathcal{L}^{\mathsf{T}}(\alpha,\beta))$

★ EA-equivalence preserves the degree BUT CCZ-equivalence does not!

Definition

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are extended affine equivalent if

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_q \right\} = \begin{pmatrix} A^{-1} & 0 \\ CA^{-1} & B \end{pmatrix} \left\{ \left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_q \right\},$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q \text{ and } G: \mathbb{F}_q \to \mathbb{F}_q \text{ are } \mathbf{CCZ}\text{-equivalent if}$ $\Gamma_F = \left\{ (x, F(x)) \mid x \in \mathbb{F}_q \right\} = \mathcal{A}(\Gamma_G) = \left\{ \mathcal{A}(x, G(x)) \mid x \in \mathbb{F}_q \right\},$ where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

* EA-equivalence and CCZ-equivalence preserve differential and linear properties,

 $\delta_{\mathsf{G}}(a,b) = \delta_{\mathsf{F}}(\mathcal{L}^{-1}(a,b)) \text{ and } \mathcal{W}_{\mathsf{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \mathcal{W}_{\mathsf{F}}(\mathcal{L}^{\mathsf{T}}(\alpha,\beta))$

* EA-equivalence preserves the degree BUT CCZ-equivalence does not!

\Rightarrow Can we get CCZ-equivalence from EA-equivalence?

Twist

Using isomorphisms
$$\mathbb{F}_2^n \simeq \mathbb{F}_2^t \times \mathbb{F}_2^{n-t}$$
 and $\mathbb{F}_2^m \simeq \mathbb{F}_2^t \times \mathbb{F}_2^{m-t}$:

Definition

 $F : \mathbb{F}_2^t \times \mathbb{F}_2^{n-t} \to \mathbb{F}_2^t \times \mathbb{F}_2^{m-t}$ and $G : \mathbb{F}_2^t \times \mathbb{F}_2^{n-t} \to \mathbb{F}_2^t \times \mathbb{F}_2^{m-t}$ are t-twist-equivalent if T_y is a permutation for all y and

$$G(u, y) = (T_y^{-1}(u), U_{T_y^{-1}(u)}(y)) .$$

Theorem [Canteaut, Perrin, FFA19]

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

EA transformation + t-twist + EA transformation

Theorem [Canteaut, Perrin, FFA19]

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

EA transformation + t-twist + EA transformation

 $\Gamma_{F} = \mathcal{A}(\Gamma_{G}) ,$

with \mathcal{A} affine permutation.

 \downarrow $\Gamma_F = (A \cdot M_t \cdot B)(\Gamma_G),$

with M_t swap matrix and A, B EA-mappings.

Theorem [Canteaut, Perrin, FFA19]

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

EA transformation + t-twist + EA transformation

 $\Gamma_{\boldsymbol{F}} = \mathcal{A}(\Gamma_{\boldsymbol{G}}) ,$

with \mathcal{A} affine permutation.

 \Downarrow

 $\Gamma_{F} = (A \cdot M_t \cdot B)(\Gamma_G) ,$

with M_t swap matrix and A, B EA-mappings.

Theorem [Canteaut, Perrin, FFA19]

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be two CCZ-equivalent functions. We can obtain G from F or F from G by composing:

EA transformation + t-twist + EA transformation

 $\Gamma_{\boldsymbol{F}} = \mathcal{A}(\Gamma_{\boldsymbol{G}}) ,$

with \mathcal{A} affine permutation.

 \Downarrow

 $\Gamma_{F} = (A \cdot M_t \cdot B)(\Gamma_G) ,$

with M_t swap matrix and A, B EA-mappings.

Example: Inverse

Let $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$,

$$\Gamma_{\textit{F}} = \left\{ \left(x,\textit{F}(x)\right) \mid x \in \mathbb{F}_{2^n} \right\} \quad \text{and} \quad \Gamma_{\textit{F}^{-1}} = \left\{ \left(y,\textit{F}^{-1}(y)\right) \mid y \in \mathbb{F}_{2^n} \right\} = \left\{ \left(\textit{F}(x),x\right) \mid x \in \mathbb{F}_{2^n} \right\}.$$

$$\begin{pmatrix} x \\ F(x) \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \begin{pmatrix} F(x) \\ x \end{pmatrix} \quad \Rightarrow \quad \text{swap matrix } M_n = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \ .$$

 \Rightarrow **F** and **F**⁻¹ are CCZ-equivalent and the degree is indeed not preserved.

CCZ-equivalence New S-box: Flystel

Example: Butterfly [PUB16]

CCZ-equivalence New S-box: Flystel

Example: Butterfly [PUB16]

