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A need for new primitives

Protocols requiring new primitives:

⋆ MPC: Multiparty Computation

⋆ FHE: Fully Homomorphic Encryption

⋆ ZK: Systems of Zero-Knowledge proofs

Example: SNARKs, STARKs, Bulletproofs
Cryptographic Primitives

Protocols

Applications

Problem: Designing new symmetric primitives

And analyse their security!
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Block ciphers

⋆ input: n-bit block

x ∈ Fn
2

⋆ parameter: k-bit key

𝜅 ∈ Fk
2

⋆ output: n-bit block

y = E𝜅(x) ∈ Fn
2

⋆ symmetry: E and E−1 use the same 𝜅

𝜅 E

x
n bits

y

n bits

(a) Block cipher

P

x
n bits

y

n bits

(b) Random permutation

A block cipher is a family
of 2k permutations of Fn

2.

E
P

?
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Iterated constructions

How to build an efficient block cipher?

By iterating a round function.

𝜅 E

x
n bits

y

n bits

Block cipher

⇒
Key schedule (optional)

𝜅

x F . . . F y

𝜅1 𝜅r

1 round
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Hash functions

Definition

Hash function: H : Fℓ
q → Fh

q, x ↦→ y = H(x) where ℓ is arbitrary and h is fixed.

x (arbitrary length) y (fixed length)H

Sponge construction

Parameters:

⋆ rate r > 0

⋆ capacity c > 0

⋆ permutation of Fr
q × Fc

q

⊞

m0

Fc
q

Fr
q

P

⊞

m1

P

. . .

. . .

z0

P

. . .

. . .

z1

P

zh

Absorption Squeezing
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Comparison with the traditional case

Traditional case

y ← E(x)

x

y

E

⋆ Optimized for:
implementation in software/hardware

⋆ Alphabet size:
Fn
2, with n ≃ 4, 8

⋆ Operations:
logical gates/CPU instructions

Arithmetization-oriented

y ← E(x) and y == E(x)

x

y

E

x

y

E−1

x

y

E1

E−1
2

⋆ Optimized for:
integration within advanced protocols

⋆ Alphabet size:
Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 64

⋆ Operations:
large finite-field arithmetic
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Comparison with the traditional case

Traditional case

y ← E(x)

⋆ Optimized for:
implementation in software/hardware

⋆ Alphabet size:
Fn
2, with n ≃ 4, 8

Ex: Field of AES: F2n where n = 8

⋆ Operations:
logical gates/CPU instructions

Arithmetization-oriented

y ← E(x) and y == E(x)

⋆ Optimized for:
integration within advanced protocols

⋆ Alphabet size:
Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 64

Ex: Scalar Field of Curve BLS12-381: Fp where

p = 0x73eda753299d7d483339d80809a1d805

53bda402fffe5bfeffffffff00000001

⋆ Operations:
large finite-field arithmetic
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Overview of the contributions

Theoretical cryptanalysis

⋆ On the Algebraic Degree of Iterated Power Functions.
Bouvier, Canteaut, Perrin.
DCC, 2023.

Practical cryptanalysis

⋆ Algebraic Attacks Against some Arithmetization-Oriented Primitives.
Bariant, Bouvier, Leurent, Perrin.
ToSC, 2022.

Design of a new AO primitive

⋆ New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi
Permutations and Jive Compression Mode.
Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov, Willems.
CRYPTO 2023.
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Cryptanalysis of MIMC

⋆ Study of the corresponding sparse univariate polynomials

⋆ Bounding the algebraic degree

⋆ Tracing maximum-weight exponents reaching the upper bound

⋆ Study of higher-order differential attacks
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The block cipher MiMC

⋆ Minimize the number of multiplications in F2n .

⋆ Construction of MiMC3 [Albrecht et al., AC16]:

⋆ n-bit blocks (n odd ≈ 129): x ∈ F2n

⋆ n-bit key: k ∈ F2n

⋆ decryption : replacing x3 by x s where
s = (2n+1 − 1)/3

r := ⌈n log3 2⌉ .

n 129 255 769 1025

r 82 161 486 647

Number of rounds for MiMC.

x

k

⊕ x3

k ⊕ c1

⊕ x3 . . .

k ⊕ cr−1

⊕ x3

k

⊕ y

1 round
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Algebraic degree - 1st definition

Let f : Fn
2 → F2, there is a unique multivariate polynomial in F2[x1, . . . xn]/

(︀
(x2i + xi )1≤i≤n

)︀
:

f (x1, ..., xn) =
∑︁
u∈Fn

2

aux
u, where au ∈ F2, x

u =
n∏︁

i=1

xui

i .

This is the Algebraic Normal Form (ANF) of f .

Definition
Algebraic degree of f : Fn

2 → F2:

dega(f ) = max
{︀
wt(u) : u ∈ Fn

2, au ̸= 0
}︀
.

If F : Fn
2 → Fm

2 , with F (x) = (f1(x), . . . fm(x)), then

dega(F ) = max{dega(fi ), 1 ≤ i ≤ m} .
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aux
u, where au ∈ F2, x

u =
n∏︁

i=1

xui
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This is the Algebraic Normal Form (ANF) of f .

Example: ANF of x ↦→ x3 in F211

(x0x10 + x0 + x1x5 + x1x9 + x2x7 + x2x9 + x2x10 + x3x4 + x3x5 + x4x8 + x4x9 + x5x10 + x6x7 + x6x10 + x7x8 + x9x10,

x0x1 + x0x6 + x2x5 + x2x8 + x3x6 + x3x9 + x3x10 + x4 + x5x8 + x5x9 + x6x9 + x7x8 + x7x9 + x7 + x10,

x0x1 + x0x2 + x0x10 + x1x5 + x1x6 + x1x9 + x2x7 + x3x4 + x3x7 + x4x5 + x4x8 + x4x10 + x5x10 + x6x7 + x6x8 + x6x9 + x7x10 + x8 + x9x10,

x0x3 + x0x6 + x0x7 + x1 + x2x5 + x2x6 + x2x8 + x2x10 + x3x6 + x3x8 + x3x9 + x4x5 + x4x6 + x4 + x5x8 + x5x10 + x6x9 + x7x9 + x7 + x8x9 + x10,

x0x2 + x0x4 + x1x2 + x1x6 + x1x7 + x2x9 + x2x10 + x3x5 + x3x6 + x3x7 + x3x9 + x4x5 + x4x7 + x4x9 + x5 + x6x8 + x7x8 + x8x9 + x8x10,

x0x5 + x0x7 + x0x8 + x1x2 + x1x3 + x2x6 + x2x7 + x2x10 + x3x8 + x4x5 + x4x8 + x5x6 + x5x9 + x7x8 + x7x9 + x7x10 + x9,

x0x3 + x0x6 + x1x4 + x1x7 + x1x8 + x2 + x3x6 + x3x7 + x3x9 + x4x7 + x4x9 + x4x10 + x5x6 + x5x7 + x5 + x6x9 + x7x10 + x8x10 + x8 + x9x10,

x0x7 + x0x8 + x0x9 + x1x3 + x1x5 + x2x3 + x2x7 + x2x8 + x3x10 + x4x6 + x4x7 + x4x8 + x4x10 + x5x6 + x5x8 + x5x10 + x6 + x7x9 + x8x9 + x9x10,

x0x4 + x0x8 + x1x6 + x1x8 + x1x9 + x2x3 + x2x4 + x3x7 + x3x8 + x4x9 + x5x6 + x5x9 + x6x7 + x6x10 + x8x9 + x8x10 + x10,

x0x10 + x1x4 + x1x7 + x2x5 + x2x8 + x2x9 + x3 + x4x7 + x4x8 + x4x10 + x5x8 + x5x10 + x6x7 + x6x8 + x6 + x7x10 + x9,

x0x5 + x0x10 + x1x8 + x1x9 + x1x10 + x2x4 + x2x6 + x3x4 + x3x8 + x3x9 + x5x7 + x5x8 + x5x9 + x6x7 + x6x9 + x7 + x8x10 + x9x10) .
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Algebraic degree - 2nd definition

Let F : Fn
2 → Fn

2. Then using the isomorphism Fn
2 ≃ F2n ,

there is a unique univariate polynomial representation on F2n of degree at most 2n − 1:

F (x) =
2n−1∑︁
i=0

bix
i ; bi ∈ F2n

Proposition

Algebraic degree of F : F2n → F2n :

dega(F ) = max{wt(i), 0 ≤ i < 2n, and bi ̸= 0}

If F : Fn
2 → Fn

2 is a permutation, then

dega(F ) ≤ n − 1
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Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace 𝒱 ⊂ Fn
2 with dim𝒱 ≥ dega(F ) + 1, we have a 0-sum distinguisher:⨁︁

x∈𝒱
F (x) = 0.

Random permutation: degree = n − 1

𝜅 E

x
n bits

y

n bits

(a) Block cipher

P

x
n bits

y

n bits

(b) Random permutation

E
P

?
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First Plateau

Polynomial representing r rounds of MIMC3:

𝒫3,r (x) = Fr ∘ . . .F1(x) , where Fi = (x + ci−1)
3 .

Upper bound [Eichlseder et al., AC20]:

⌈r log2 3⌉ .
Aim: determine

B r
3 := max

c
dega(𝒫3,r ) .

Example

⋆ Round 1: B1
3 = 2

𝒫3,1(x) = x3

3 = [11]2

⋆ Round 2: B2
3 = 2

𝒫3,2(x) = x9 + c1x
6 + c21x

3 + c31

9 = [1001]2 6 = [110]2 3 = [11]2
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Observed degree

Definition
There is a plateau between rounds r and r +1
whenever:

B r+1
3 = B r

3 .

Proposition

If d = 2j−1, there is always a plateau between
rounds 1 and 2:

B2
d = B1

d .

Algebraic degree observed for n = 31.
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Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

ℰ3,r = {3×j mod (2n − 1) where j is covered by i , i ∈ ℰ3,r−1}

Missing exponents: no exponent 22k − 1

Proposition

∀i ∈ ℰ3,r , i ̸≡ 5, 7 mod 8

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Representation of exponents. Missing exponents mod8.
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Bounding the degree

Theorem
After r rounds of MIMC3, the algebraic degree is

B r
3 ≤ 2× ⌈⌊r log2 3⌋/2− 1⌉

If 3r < 2n − 1:

⋆ A lower bound

B r
3 ≥ max{wt(3i ), i ≤ r}

⋆ Upper bound
reached for almost
16265 rounds
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Tracing exponents
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Covered rounds

Idea of the proof:

⋆ inductive proof

Rounds for which we are able to exhibit a maximum-weight exponent.

0 19 247 12 53 359106 159 212 265 318 412 465

466 665518 624571 718571 718 771 824 16225 16265

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

rounds covered by the inductive procedure rounds not covered
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Covered rounds

Idea of the proof:

⋆ inductive proof

⋆ MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

0 465

466 571 718 771 824 16225 16265

53 53

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

rounds covered by the inductive procedure or MILP rounds not covered
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Plateau

Proposition

There is a plateau when ⌊r log2 3⌋ = 1 mod 2 and ⌊(r + 1) log2 3⌋ = 0 mod 2

If we have a plateau

B r
3 = B r+1

3 ,

Then the next one is

B r+4
3 = B r+5

3

or
B r+5
3 = B r+6

3 .
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Music in MIMC3

⋆ Patterns in sequence (⌊r log2 3⌋)r>0: denominators of semiconvergents of

log2(3) ≃ 1.5849625

D = { 1 , 2 , 3, 5, 7 , 12 , 17, 29, 41, 53 , 94, 147, 200, 253, 306, 359 , . . .} ,

log2(3) ≃
a

b
⇔ 2a ≃ 3b

⋆ Music theory:

⋆ perfect octave 2:1

⋆ perfect fifth 3:2
219 ≃ 312 ⇔ 27 ≃

(︂
3

2

)︂12

⇔ 7 octaves ∼ 12 fifths

x

k

⊕ x3

k ⊕ c1

⊕
;
�
�����

x3 . . .

k ⊕ cr−1

⊕
;
�
�����

x3

k

⊕
;
�
�����

y
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Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace 𝒱 ⊂ Fn
2 with dim𝒱 ≥ dega(F ) + 1, we have a 0-sum distinguisher:⨁︁

x∈𝒱
F (x) = 0.

Random permutation: degree = n − 1

𝜅 E

x
n bits

y

n bits

(a) Block cipher

P

x
n bits

y

n bits

(b) Random permutation

E
P

?
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Comparison to previous work

First Bound: ⌈r log2 3⌉ Exact degree: 2× ⌈⌊r log2 3⌋/2− 1⌉ .

For n = 129, MIMC3 = 82 rounds

Rounds Time Data Source

80/82 2128xor 2128 [EGL+20]

81/82 2128xor 2128 New

80/82 2125xor 2125 New

Secret-key distinguishers (n = 129)
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Take-Away

A better understanding of the algebraic degree of MiMC

⋆ guarantee on the degree of MIMC3

⋆ upper bound on the algebraic degree

2× ⌈⌊r log2 3⌋/2− 1⌉ .

⋆ bound tight, up to 16265 rounds

⋆ minimal complexity for higher-order differential attack

Missing exponents in the
univariate representation

Bounds on the algebraic degree Higher-Order differential attacks

???
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Algebraic Attacks against AOP

⋆ Solving the CICO problem

⋆ Trick to bypass rounds of SPN construction

⋆ Application to Poseidon and Rescue–Prime

⋆ Solving Ethereum Challenges
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CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let P : Ft
q → Ft

q and u < t.

The CICO problem is:

Finding X ,Y ∈ Ft−u
q s.t. P(X , 0u) = (Y , 0u).

x0 x1 0

y0 y1 0

P

when t = 3, u = 1.

Ethereum Challenges: solving CICO problem for AO primitives with q ∼ 264 prime

⋆ Feistel–MiMC [Albrecht et al., AC16]

⋆ Poseidon [Grassi et al., USENIX21]

⋆ Rescue–Prime [Aly et al., ToSC20]

⋆ Reinforced Concrete [Grassi et al., CCS22]
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Trick for SPN
Let P = P0 ∘ P1 be a permutation of F3

p and suppose

∃ V ,G ∈ F3
p, s.t. ∀ X ∈ Fp, P−1

0 (XV + G ) = (*, *, 0) .

x0 x1 0

y0 y1 0

P

P
o
ly
n
o
m
ia
l
sy
st
em

(a) R-round system.

XV + G

x0 x1 0

y0 y1 0

P0

P1

P
o
ly
n
o
m
ia
l
sy
st
em

P
r
=

1

(b) (R − 2)-round system.
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Trick for Poseidon

*

c00⊞

*

c01⊞

0

c02⊞

x3 x3 x3

* * (c02 )
3

M

A0X1/3 − c10 A1X1/3 − c11 g1/3 − c12

c10 c11 c12⊞ ⊞ ⊞

x3 x3 x3

A0
3X A1

3X g

(a) First two rounds.

* * 0

(A0
3X, A1

3X, g)

* * 0

P0

P1

R
−

2
ro
u
n
d
s

2
ro
u
n
d
s

(b) Overview.
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Trick for Rescue–Prime

*

C0
0⊞

*

C0
1⊞

0

C0
2⊞

x3 x3 x3

* * C0
2

M

A0X3 A1X3 g3

x1/3 x1/3 x1/3

A0
1/3X A1

1/3X g

(a) First round.

* * 0

(A0
1/3X, A1

1/3X, g)

* * 0

P0

P1

R
−

1
ro
u
n
d
s

1
ro
u
n
d

(b) Overview.
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Attack complexity

Univariate solving Multivariate solving

Authors Ethereum Our
RP

claims claims
degu

complexity

3 217 245 39 ≈ 214.3 226

8 225 253 314 ≈ 222.2 235

13 233 261 319 ≈ 230.1 244

19 242 269 325 ≈ 239.6 254

24 250 277 330 ≈ 247.5 262

(a) For Poseidon.

Authors Ethereum Our
R m

claims claims
degu

complexity

4 3 236 237.5 39 ≈ 214.3 243

6 2 240 237.5 311 ≈ 217.4 253

7 2 248 243.5 313 ≈ 220.6 262

5 3 248 245 312 ≈ 219.0 257

8 2 256 249.5 315 ≈ 223.8 272

(b) For Rescue–Prime.
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Cryptanalysis Challenge

Security
Category Parameters

level
Bounty

Easy N = 4,m = 3 25 $2, 000

Easy N = 6,m = 2 25 $4, 000

Medium N = 7,m = 2 29 $6, 000

Hard N = 5,m = 3 30 $12, 000

Hard N = 8,m = 2 33 $26, 000

(a) Rescue–Prime

Security
Category Parameters

level
Bounty

Easy r = 6 9 $2, 000

Easy r = 10 15 $4, 000

Medium r = 14 22 $6, 000

Hard r = 18 28 $12, 000

Hard r = 22 34 $26, 000

(b) Feistel–MiMC

Security
Category Parameters

level
Bounty

Easy RP = 3 8 $2, 000

Easy RP = 8 16 $4, 000

Medium RP = 13 24 $6, 000

Hard RP = 19 32 $12, 000

Hard RP = 24 40 $26, 000

(c) Poseidon

Security
Category Parameters

level
Bounty

Easy p = 281474976710597 24 $4, 000

Medium p = 72057594037926839 28 $6, 000

Hard p = 18446744073709551557 32 $12, 000

(d) Reinforced Concrete
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Take-Away

AOP cryptanalysis is a lucrative business!

Recommendations for future designs

⋆ study possible tricks to bypass rounds

⋆ start (and end) with a linear layer

⋆ prefer univariate instead of multivariate systems

⋆ consider as many variants of modeling as possible

Related works

⋆ FreeLunch attack against AOP [Bariant et al., 2024]
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Design of Anemoi

⋆ Link between CCZ-equivalence and Arithmetization-Orientation

⋆ A new S-Box: the Flystel

⋆ A new family of ZK-friendly hash functions: Anemoi
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Performance metric

What does “efficient” mean for Zero-Knowledge Proofs?

“It depends”

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

y = (ax + b)3(cx + d) + ex

3 constraints
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Our approach

Need: verification using few multiplications.

⋆ First approach: evaluation using few multiplications, e.g. Poseidon [Grassi et al., USENIX21]

y ← E (x) ; E : low degree y == E (x) ; E : low degree

⋆ First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]

y ← E (x) ; E : high degree x == E−1(y) ; E−1: low degree

⋆ Our approach: using (u, v) = ℒ(x , y), where ℒ is linear

y ← F (x) ; F : high degree v == G (u) ; G : low degree
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CCZ-equivalence

Inversion

ΓF = {(x ,F (x)) , x ∈ Fq} and ΓF−1 =
{︀(︀

y ,F−1(y)
)︀
, y ∈ Fq

}︀
Noting that

ΓF =
{︀(︀

F−1(y), y
)︀
, y ∈ Fq

}︀
,

then, we have:

ΓF =

(︂
0 1
1 0

)︂
ΓF−1 .

Definition [Carlet, Charpin and Zinoviev, DCC98]

F : Fq → Fq and G : Fq → Fq are CCZ-equivalent if

ΓF = ℒ(ΓG ) + c , where ℒ is linear.

On the new generation of symmetric primitives: the AOP Clémence Bouvier 36 / 51



A new context Cryptanalysis of MiMC Algebraic Attacks against AOP Design of Anemoi Conclusions

CCZ-equivalence

Inversion

ΓF = {(x ,F (x)) , x ∈ Fq} and ΓF−1 =
{︀(︀

y ,F−1(y)
)︀
, y ∈ Fq

}︀
Noting that

ΓF =
{︀(︀

F−1(y), y
)︀
, y ∈ Fq

}︀
,

then, we have:

ΓF =

(︂
0 1
1 0

)︂
ΓF−1 .

Definition [Carlet, Charpin and Zinoviev, DCC98]

F : Fq → Fq and G : Fq → Fq are CCZ-equivalent if

ΓF = ℒ(ΓG ) + c , where ℒ is linear.

On the new generation of symmetric primitives: the AOP Clémence Bouvier 36 / 51



A new context Cryptanalysis of MiMC Algebraic Attacks against AOP Design of Anemoi Conclusions

Advantages of CCZ-equivalence

If F : Fq → Fq and G : Fq → Fq are CCZ-equivalent. Then

⋆ Differential properties are the same: 𝛿F = 𝛿G .

Differential uniformity

Maximum value of the DDT

𝛿F = max
a ̸=0,b

|{x ∈ Fm
q ,F (x + a)− F (x) = b}|

⋆ Linear properties are the same: 𝒲F = 𝒲G .

Linearity

Maximum value of the LAT

𝒲F = max
a,b ̸=0

⃒⃒⃒⃒
⃒⃒ ∑︁
x∈Fm

2n

(−1)a·x+b·F (x)

⃒⃒⃒⃒
⃒⃒
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Advantages of CCZ-equivalence

If F : Fq → Fq and G : Fq → Fq are CCZ-equivalent. Then

⋆ Verification is the same: if y ← F (x), v ← G (u) and (u, v) = ℒ(x , y)

y == F (x)? ⇐⇒ v == G (u)?

⋆ The degree is not preserved.

Example

in Fp where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

if F (x) = x5 then F−1(x) = x5−1

where

5−1 = 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332cccccccd
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The Flystel

Butterfly + Feistel ⇒ Flystel

A 3-round Feistel-network with
Q𝛾 : Fq → Fq and Q𝛿 : Fq → Fq two quadratic functions, and E : Fq → Fq a permutation

High-Degree
permutation

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

E−1

Q𝛿

Open Flystel ℋ.

Low-Degree
function

x2 y2

⊟

⊞ ⊞

x1 y1

Q𝛾 E Q𝛿

Closed Flystel 𝒱.

Γℋ = ℒ(Γ𝒱) s.t. ((x1, x2), (y1, y2)) = ℒ ( ((y2, x2), (x1, y1)) )
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Advantage of CCZ-equivalence

⋆ High-Degree Evaluation.

⋆ Low-Degree Verification.

(y1, y2) == ℋ(x1, x2)⇔ (x1, y1) == 𝒱(x2, y2)

High-Degree
permutation

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

E−1

Q𝛿

Open Flystel ℋ.

Example

if E : x ↦→ x5 in Fp where

p = 0x73eda753299d7d483339d80809a1d805

53bda402fffe5bfeffffffff00000001

then E−1 : x ↦→ x5−1
where

5−1 = 0x2e5f0fbadd72321ce14a56699d73f002

217f0e679998f19933333332cccccccd

On the new generation of symmetric primitives: the AOP Clémence Bouvier 40 / 51



A new context Cryptanalysis of MiMC Algebraic Attacks against AOP Design of Anemoi Conclusions

Advantage of CCZ-equivalence

⋆ High-Degree Evaluation.

⋆ Low-Degree Verification.

(y1, y2) == ℋ(x1, x2)⇔ (x1, y1) == 𝒱(x2, y2)

High-Degree
permutation

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

E−1

Q𝛿

Open Flystel ℋ.

Low-Degree
function

x2 y2

⊟

⊞ ⊞

x1 y1

Q𝛾 E Q𝛿

Closed Flystel 𝒱.

On the new generation of symmetric primitives: the AOP Clémence Bouvier 40 / 51



A new context Cryptanalysis of MiMC Algebraic Attacks against AOP Design of Anemoi Conclusions

Flystel in F2n, n odd

Q𝛾(x) = 𝛾 + 𝛽x3 , Q𝛿(x) = 𝛿 + 𝛽x3 , and E (x) = x3

x1 x2

⊕

⊕

⊕
y1 y2

𝛾 + 𝛽x3

x1/3

𝛿 + 𝛽x3

Open Flystel2.

x2 y2

⊕

⊕ ⊕
x1 y1

𝛾 + 𝛽x3
x3 𝛿 + 𝛽x3

Closed Flystel2.
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Properties of Flystel in F2n, n odd

x1 x2

⊕

⊕

⊕

⊕

y1 y2

𝛾 + 𝛽x3

x1/3

x3

𝛿 + 𝛽x3

Degenerated Butterfly.

Introduced by [Perrin et al. 2016].

Theorems in [Li et al. 2018] state that if 𝛽 ̸= 0:

⋆ Differential properties

𝛿ℋ = 𝛿𝒱 = 4

⋆ Linear properties

𝒲ℋ =𝒲𝒱 = 2n+1

⋆ Algebraic degree

⋆ Open Flystel2: degℋ = n
⋆ Closed Flystel2: deg𝒱 = 2
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Flystel in Fp

Q𝛾(x) = 𝛾 + 𝛽x2 , Q𝛿(x) = 𝛿 + 𝛽x2 , and E (x) = xd

x1 x2

⊟

⊟

⊞

y1 y2

𝛾 + 𝛽x2

x1/d

𝛿 + 𝛽x2

Open Flystelp.

usually
d = 3 or 5.

x2 y2

⊟

⊞ ⊞

x1 y1

𝛾 + 𝛽x2
xd 𝛿 + 𝛽x2

Closed Flystelp.
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Properties of Flystel in Fp

⋆ Differential properties

Flystelp has a differential uniformity:

𝛿ℋ = max
a ̸=0,b

|{x ∈ F2
p,ℋ(x + a)−ℋ(x) = b}| ≤ d − 1

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over F2
p

⋆ Linear properties

Conjecture:

𝒲ℋ = max
a,b ̸=0

⃒⃒⃒⃒
⃒⃒∑︁
x∈F2

p

exp

(︂
2𝜋i(⟨a, x⟩ − ⟨b,ℋ(x)⟩)

p

)︂⃒⃒⃒⃒⃒⃒ ≤ p log p ?
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The SPN Structure

The internal state of Anemoi and its basic operations.

A Substitution-Permutation Network with:

x0 ... xℓ−1

y0 ... yℓ−1

(a) Internal state.

X i

Y i

C i

D i
+=

(b) The constant addition.

ℳx

ℳy =ℳx ∘ 𝜌

(c) The diffusion layer.

𝒫 𝒫 ... 𝒫 with 𝒫 =

[︂
2 1
1 1

]︂

(d) The Pseudo-Hadamard Transform.

ℋ ℋ ... ℋ

(e) The S-box layer.

On the new generation of symmetric primitives: the AOP Clémence Bouvier 45 / 51



A new context Cryptanalysis of MiMC Algebraic Attacks against AOP Design of Anemoi Conclusions

The SPN Structure

yrℓ−1

yrℓ−2

.

.

.

yr2

yr1

yr0

drℓ−1drℓ−2
. . .dr2dr1dr0

⊞
⊞

⊞

⊞
⊞

ℳy

xrℓ−1

xrℓ−2

.

.

.

xr2

xr1

xr0

crℓ−1crℓ−2
. . .cr2cr1cr0

⊞
⊞

⊞

⊞
⊞

ℳx

⊞
⊞

⊞
⊞

⊞
⊞

⊞
⊞

⊞
⊞

ℋ

ℋ

ℋ

ℋ

ℋ

xr+1
ℓ−1

xr+1
ℓ−2

.

.

.

xr+1
2

xr+1
1

xr+1
0

yr+1
ℓ−1

yr+1
ℓ−2

.

.

.

yr+1
2

yr+1
1

yr+1
0

.

.

.
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Performance metric

What does “efficient” mean for Zero-Knowledge Proofs?

“It depends”

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

y = (ax + b)3(cx + d) + ex

t0 = a · x
t1 = t0 + b

t2 = t1 × t1

t3 = t2 × t1

t4 = c · x
t5 = t4 + d

t6 = t3 × t5

t7 = e · x
t8 = t6 + t7

3 constraints
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Some Benchmarks

** Numbers to be updated! **

m (= 2ℓ) RP1 Poseidon2 Griffin3 Anemoi

2 208 198 - 76
4 224 232 112 96
6 216 264 - 120

R1CS

8 256 296 176 160

2 312 380 - 191
4 560 832 260 316
6 756 1344 - 460

Plonk

8 1152 1920 574 648

2 156 300 - 126
4 168 348 168 168
6 162 396 - 216

AIR

8 192 456 264 288

(a) when d = 3.

m (= 2ℓ) RP Poseidon Griffin Anemoi

2 240 216 - 95
4 264 264 110 120
6 288 315 - 150

R1CS

8 384 363 162 200

2 320 344 - 212
4 528 696 222 344
6 768 1125 - 496

Plonk

8 1280 1609 492 696

2 200 360 - 210
4 220 440 220 280
6 240 540 - 360

AIR

8 320 640 360 480

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

1Rescue [Aly et al., ToSC20] 2Poseidon [Grassi et al., USENIX21] 3Griffin [Grassi et al., CRYPTO23]
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Some Benchmarks
** Numbers to be updated! **

m (= 2ℓ) RP1 Poseidon2 Griffin3 Anemoi

2 208 198 - 76
4 224 232 112 96
6 216 264 - 120

R1CS

8 256 296 176 160

2 312 380 - 191
4 560 832 260 316
6 756 1344 - 460

Plonk

8 1152 1920 574 648

2 156 300 - 126
4 168 348 168 168
6 162 396 - 216

AIR

8 192 456 264 288

(a) when d = 3.

m (= 2ℓ) RP Poseidon Griffin Anemoi

2 240 216 - 95
4 264 264 110 120
6 288 315 - 150

R1CS

8 384 363 162 200

2 320 344 - 212
4 528 696 222 344
6 768 1125 - 496

Plonk

8 1280 1609 492 696

2 200 360 - 210
4 220 440 220 280
6 240 540 - 360

AIR

8 320 640 360 480

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

1Rescue [Aly et al., ToSC20] 2Poseidon [Grassi et al., USENIX21] 3Griffin [Grassi et al., CRYPTO23]

On the new generation of symmetric primitives: the AOP Clémence Bouvier 48 / 51



A new context Cryptanalysis of MiMC Algebraic Attacks against AOP Design of Anemoi Conclusions

Take-Away

Anemoi: A new family of ZK-friendly hash functions

⋆ Identify a link between AO and CCZ-equivalence

⋆ Contributions of fundamental interest:

⋆ New S-box: Flystel
⋆ New mode: Jive

Related works

⋆ AnemoiJive3 with TurboPlonK [Liu et al., 2022]

⋆ Arion [Roy, Steiner and Trevisani, 2023]

⋆ APN permutations over prime fields [Budaghyan and Pal, 2023]
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Conclusions

⋆ Practical and theoretical cryptanalysis

⋆ a better insight into the behaviour of algebraic systems

⋆ a comprehensive understanding of the univariate representation of MiMC

⋆ guarantees on the algebraic degree of MiMC

⋆ New tools for designing primitives:

⋆ Anemoi: a new family of ZK-friendly hash functions

⋆ a link between CCZ-equivalence and AO

⋆ more general contributions: Jive, Flystel
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Perspectives

⋆ On the cryptanalysis

⋆ solve conjectures to trace maximum-weight exponents

⋆ generalization to other schemes

⋆ find a univariate distinguisher

⋆ On the design

⋆ a Flystel with more branches

⋆ solve the conjecture for the linearity

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thank you
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Backup

Anemoi

More benchmarks and Cryptanalysis
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Backup

Sponge construction

⋆ Hash function (random oracle):

⋆ input: arbitrary length
⋆ ouput: fixed length

⊞

m0

Fc
q

Fr
q

Anemoi

⊞

m1

Anemoi

⊞

m2

Anemoi

. . .

. . .

z0

Anemoi

. . .

. . .

z1

Anemoi

zh

Absorption Squeezing
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Backup

New Mode: Jive

⋆ Compression function (Merkle-tree):

⋆ input: fixed length
⋆ output: (input length) /2

Dedicated mode: 2 words in 1
(x , y) ↦→ x + y + u + v .

x

y

0

w

/

/

P

x y

Jive2(x , y)

P

u v

⊞

⊞

Dedicated mode: b words in 1

Jiveb(P) :

⎧⎪⎨⎪⎩
(Fm

q )
b → Fm

q

(x0, ..., xb−1) ↦→
b−1∑︁
i=0

(xi + Pi (x0, ..., xb−1)) .

x0 x1 . . . xb−1

Jiveb(x0, ..., xb−1)

P

⊞

⊞

⊞

On the new generation of symmetric primitives: the AOP Clémence Bouvier 3 / 21



Backup

New Mode: Jive

⋆ Compression function (Merkle-tree):

⋆ input: fixed length
⋆ output: (input length) /b
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⎧⎪⎨⎪⎩
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Backup

Comparison for Plonk (with optimizations)

m Constraints

Poseidon
3 110

2 88

3 378
Reinforced Concrete

2 236

Rescue–Prime 3 252

Griffin 3 125

AnemoiJive 2 86 56

(a) With 3 wires.

m Constraints

Poseidon
3 98

2 82

3 267
Reinforced Concrete

2 174

Rescue–Prime 3 168

Griffin 3 111

AnemoiJive 2 64

(b) With 4 wires.

Constraints comparison with an additional custom gate for x𝛼. (s = 128).

with an additional quadratic custom gate: 56 constraints
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Backup

Native performance

Rescue-12 Rescue-8 Poseidon-12 Poseidon-8 Griffin-12 Griffin-8 Anemoi-8

15.67 𝜇s 9.13 𝜇s 5.87 𝜇s 2.69 𝜇s 2.87 𝜇s 2.59 𝜇s 4.21 𝜇s

2-to-1 compression functions for Fp with p = 264 − 232 + 1 (s = 128).

Rescue Poseidon Griffin Anemoi

206 𝜇s 9.2 𝜇s 74.18 𝜇s 128.29 𝜇s

For BLS12− 381, Rescue, Poseidon, Anemoi with state size of 2, Griffin of 3 (s = 128).
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Backup

Algebraic attacks: 2 modelings

Xi Yi

ci di⊞ ⊞

⊞

⊞

X ′
i Y ′

i

Y ′
i Yi+1

⊟

⊞ ⊞

X ′
i Xi+1

𝛽x2 + 𝛾 xd 𝛽x2 + 𝛿

(a) Model 1.

Xi Yi

ci di⊞ ⊞

⊞

⊞

X ′
i Y ′

i

Vi

Xi+1 Yi+1

𝛽x2 + 𝛾⊟

x1/d ⊟

𝛽x2 + 𝛿⊞

(b) Model 2.
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Backup

Properties of Flystel in Fp
⋆ Linear properties

𝒲ℋ = max
a,b ̸=0

⃒⃒⃒⃒
⃒⃒∑︁
x∈F2

p

exp

(︂
2𝜋i(⟨a, x⟩ − ⟨b,ℋ(x)⟩)

p

)︂⃒⃒⃒⃒⃒⃒ ≤ p log p ?

(a) For different d . (b) For the smallest d .

Conjecture for the linearity.

(a) when p = 11 and d = 3. (b) when p = 13 and d = 5. (c) when p = 17 and d = 3.

LAT of Flystelp.
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Backup

Open problems

on the Algebraic Degree
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Backup

Missing exponents when d = 2j − 1

⋆ For MIMC3

i mod 8 ̸∈ {5, 7} .

⋆ For MIMC7

i mod 16 ̸∈ {9, 11, 13, 15} .

⋆ For MIMC15

i mod 32 ̸∈ {17, 19, 21, 23, 25, 27, 29, 31} .

⋆ For MIMC31

i mod 64 ̸∈ {33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63} .

(a) For MIMC3. (b) For MIMC7.

(c) For MIMC15. (d) For MIMC31.

Proposition

Let i ∈ ℰd,r , where d = 2j − 1. Then:

∀ i ∈ ℰd,r , i mod 2j+1 ∈
{︀
0, 1, . . . 2j

}︀
U

{︀
2j + 2𝛾, 𝛾 = 1, 2, . . . 2j−1 − 1

}︀
.
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Backup

Missing exponents when d = 2j + 1

⋆ For MIMC5

i mod 4 ∈ {0, 1} .

⋆ For MIMC9

i mod 8 ∈ {0, 1} .

⋆ For MIMC17

i mod 16 ∈ {0, 1} .

⋆ For MIMC33

i mod 32 ∈ {0, 1} .

(a) For MIMC5. (b) For MIMC9.

(c) For MIMC17. (d) For MIMC33.

Proposition

Let i ∈ ℰd,r where d = 2j + 1 and j > 1. Then:

∀ i ∈ ℰd,r , i mod 2j ∈ {0, 1} .
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Backup

Missing exponents when d = 2j + 1 (first rounds)

Corollary

Let i ∈ ℰd,r where d = 2j + 1 and j > 1. Then:{︃
i mod 22j ∈

{︀
{𝛾2j , (𝛾 + 1)2j + 1}, 𝛾 = 0, . . . r − 1

}︀
if r ≤ 2j ,

i mod 2j ∈ {0, 1} if r ≥ 2j .

(a) Round 1 (b) Round 2 (c) Round 3 (d) Round 4

(a) Round 5 (b) Round 6 (c) Round 7 (d) Round r ≥ 8
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Backup

Bounding the degree when d = 2j − 1

Note that if d = 2j − 1, then
2i mod d ≡ 2i mod j .

Proposition

Let d = 2j − 1, such that j ≥ 2. Then,

B r
d ≤ ⌊r log2 d⌋ − (⌊r log2 d⌋ mod j) .

Note that if 2 ≤ j ≤ 7, then
2⌊r log2 d⌋+1 − 2j − 1 > d r .

Corollary

Let d ∈ {3, 7, 15, 31, 63, 127}. Then,

B r
d ≤

{︃
⌊r log2 d⌋ − j if ⌊r log2 d⌋ mod j = 0 ,

⌊r log2 d⌋ − (⌊r log2 d⌋ mod j) else .
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Backup

Bounding the degree when d = 2j − 1

Particularity: Plateau when ⌊r log2 d⌋ mod j = j − 1 and ⌊(r + 1) log2 d⌋ mod j = 0.

Bound for MIMC3 Bound for MIMC7

On the new generation of symmetric primitives: the AOP Clémence Bouvier 13 / 21



Backup

Bounding the degree when d = 2j + 1

Note that if d = 2j + 1, then

2i mod d ≡

{︃
2i mod 2j if i ≡ 0, . . . , j mod 2j ,

d − 2(i mod 2j)−j if i ≡ 0, . . . , j mod 2j .

Proposition

Let d = 2j + 1 s.t. j > 1. Then if r > 1:

B r
d ≤

{︃
⌊r log2 d⌋ − j + 1 if ⌊r log2 d⌋ mod 2j ∈ {0, j − 1, j + 1} ,
⌊r log2 d⌋ − j else .

The bound can be refined on the first rounds!
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Backup

Bounding the degree when d = 2j + 1

Particularity: There is a gap in the first rounds.

Bound for MIMC5 Bound for MIMC9
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Backup

Exact degree

Maximum-weight exponents:

Let kr = ⌊log2 3r⌋.

∀r ∈ {4, . . . , 16265}∖ℱ with ℱ = {465, 571, . . .}:

⋆ if kr = 1 mod 2,

𝜔r = 2kr − 5 ∈ ℰ3,r ,

⋆ if kr = 0 mod 2,

𝜔r = 2kr − 7 ∈ ℰ3,r .

22k−10 − 7

22k−9 − 5

22k−7 − 5

22k−6 − 7

22k−4 − 7

22k−3 − 5

22k−1 − 5

22k+1 − 5

r − 7

r − 6

r − 5

r − 4

r − 3

r − 2

r − 1

r

kr−i mod 2

0

1

1

0

0

1

1

1

Constructing exponents.

In most cases, ∃ ℓ s.t. 𝜔r−ℓ ∈ ℰ3,r−ℓ ⇒ 𝜔r ∈ ℰ3,r
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Backup

Sporadic Cases

Observation

Let k3,r = ⌊r log2 3⌋. If 4 ≤ r ≤ 16265, then

3r > 2k3,r + 2r .

Observation
Let t be an integer s.t. 1 ≤ t ≤ 21. Then

∀x ∈ Z/3tZ, ∃𝜀2, . . . , 𝜀2t+2 ∈ {0, 1}, s.t. x =
2t+2∑︁
j=2

𝜀j4
j mod 3t .

Is it true for any t?

Should we consider more 𝜀j for larger t?
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Backup

More maximum-weight exponents

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

k3,r 1 3 4 6 7 9 11 12 14 15 17 19 20 22 23 25 26 28

b3,r 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0
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Backup

Study of MiMC−13

Inverse: F : x ↦→ x s , s = (2n+1 − 1)/3 = [101..01]2

x x s

cr−1

⊕ x s . . .

c1

⊕ x s y
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Backup

First plateau

Plateau between rounds 1 and 2, for s = (2n+1 − 1)/3 = [101..01]2

⋆ Round 1:
B1
s = wt(s) = (n + 1)/2

⋆ Round 2:
B2
s = max{wt(i s), for i ⪯ s} = (n + 1)/2

Proposition

For i ⪯ s such that wt(i) ≥ 2:

wt(i s) ∈

{︃
[wt(i)− 1, (n − 1)/2] if wt(i) ≡ 2 mod 3

[wt(i), (n + 1)/2] if wt(i) ≡ 0, 1 mod 3
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Backup

Next Rounds

Proposition [Boura and Canteaut, IEEE13]

∀i ∈ [1, n− 1], if the algebraic degree of encryption is dega(F ) < (n− 1)/i , then the algebraic
degree of decryption is dega(F−1) < n − i

rn−i ≥
⌈︂

1

log2 3

(︂
2

⌈︂
1

2

⌈︂
n − 1

i

⌉︂⌉︂
+ 1

)︂⌉︂
.

In particular:

rn−2 ≥
⌈︁

1
log2 3

(︀
2
⌈︀
n−1
4

⌉︀
+ 1

)︀⌉︁
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rounds

2
4
6
8

10
12
14
16
18
20
22
24

De
gr

ee
Lower Bound
Upper Bound
Observed Degree
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