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New symmetric primitives
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A need for new primitives

Protocols requiring new primitives:

⋆ FHE: Fully Homomorphic Encryption

⋆ MPC: Multiparty Computation

⋆ ZK: Systems of Zero-Knowledge proofs

Example: SNARKs, STARKs, Bulletproofs
Symmetric Primitives

Advanced Protocols

Applications

Problem: Designing new symmetric primitives

And analyse their security!
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Block ciphers

⋆ input: n-bit block

x ∈ Fn
2

⋆ parameter: k-bit key

𝜅 ∈ Fk
2

⋆ output: n-bit block

y = E𝜅(x) ∈ Fn
2

⋆ symmetry: E and E−1 use the same 𝜅

𝜅 E

x
n bits

y

n bits

(a) Block cipher

P

x
n bits

y

n bits

(b) Random permutation

A block cipher is a family
of 2k permutations of Fn

2.

E
P

?

An Overview of AOPs: Design and Security Insights Clémence Bouvier 4 / 92



Introduction Anemoi Skyscraper HO differential attacks Algebraic attacks Linear attacks Conclusions

Block ciphers

⋆ input: n-bit block

x ∈ Fn
2

⋆ parameter: k-bit key

𝜅 ∈ Fk
2

⋆ output: n-bit block

y = E𝜅(x) ∈ Fn
2

⋆ symmetry: E and E−1 use the same 𝜅

𝜅 E

x
n bits

y

n bits

(a) Block cipher

P

x
n bits

y

n bits

(b) Random permutation

A block cipher is a family
of 2k permutations of Fn

2.

E
P

?

An Overview of AOPs: Design and Security Insights Clémence Bouvier 4 / 92



Introduction Anemoi Skyscraper HO differential attacks Algebraic attacks Linear attacks Conclusions

Iterated constructions

How to build an efficient block cipher?

By iterating a round function.

𝜅 E

x
n bits

y

n bits

⇒
Key schedule (optional)

𝜅

x F . . . F y

𝜅1 𝜅r

1 round

Performance constraints! The primitive must be fast.
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SPN construction

SPN = Substitution Permutation Networks

S

S
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...

M AddK
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Hash functions

Definition

Hash function: H : Fℓ
q → Fh

q, x ↦→ y = H(x) where ℓ is arbitrary and h is fixed.

x (arbitrary length) y (fixed length)H

⋆ Preimage resistance: Given y it must be infeasible to
find x s.t. H(x) = y .

⋆ Collision resistance: It must be infeasible to
find x ̸= x ′ s.t. H(x) = H(x ′) .
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Sponge construction

Sponge construction

Parameters:

⋆ rate r > 0

⋆ capacity c > 0

⋆ permutation of Fn
q (n = r + c)

⊞

m0

Fc
q

Fr
q

P

⊞

m1

P

. . .

. . .

z0

P

. . .

. . .

z1

P

zh

Absorption Squeezing

P is an iterated construction

x0

...

xn−1

F0 F1
. . . Fr−1

y0

...

yn−1
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New symmetric primitives
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Performance metric

What does “efficient” mean for Zero-Knowledge Proofs?

“It depends”

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

y = (ax + b)3(cx + d) + ex

3 constraints
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Comparison with the traditional case

Traditional case

y ← E(x)

x

y

E

⋆ Optimized for:
implementation in software/hardware

⋆ Alphabet size:
Fn
2, with n ≃ 4, 8

⋆ Operations:
logical gates/CPU instructions

Cryptanalysis

Decades of analysis

Arithmetization-oriented

y ← E(x) and y == E(x)

x

y

E

x

y

E−1

x

y

E1

E−1
2

⋆ Optimized for:
integration within advanced protocols

⋆ Alphabet size:
Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 64

⋆ Operations:
large finite-field arithmetic

Cryptanalysis

≤ 8 years of analysis
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Comparison with the traditional case

Traditional case

y ← E(x)

⋆ Optimized for:
implementation in software/hardware

⋆ Alphabet size:
Fn
2, with n ≃ 4, 8

Ex: Field of AES: F2n where n = 8

⋆ Operations:
logical gates/CPU instructions

Cryptanalysis

Decades of analysis

Arithmetization-oriented

y ← E(x) and y == E(x)

⋆ Optimized for:
integration within advanced protocols

⋆ Alphabet size:
Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 64

Ex: Scalar Field of Curve BLS12-381: Fp where

p = 0x73eda753299d7d483339d80809a1d805

53bda402fffe5bfeffffffff00000001

⋆ Operations:
large finite-field arithmetic

Cryptanalysis

≤ 8 years of analysis
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ZKP Primitives overview

Type I
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Type III
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DESIGN
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Design

Design

Type I

MiMC [AGRRT16] / Feistel-MiMC [AGRRT16]

Poseidon [GKRRS21]

Type II

Rescue [AABDS20] / Rescue-Prime [SAD20]

Anemoi [BBCPSVW23]

Type III

Reinforced-Concrete [GKLRSW22]

Skyscraper [BGKKRSS25]

Cryptanalysis
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Type I: Low-degree Primitives

Examples:

MiMC [AGRRT16] / Feistel-MiMC [AGRRT16]

Poseidon [GKRRS21]
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MiMC / Feistel-MiMC

M. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen, 2016

⋆ n-bit blocks (n odd ≈ 129): x ∈ F2n

⋆ n-bit key: k ∈ F2n

⋆ decryption : replacing x3 by x s where s = (2n+1 − 1)/3

⋆ 82 rounds when n = 129

x

k

⊕ x3

k ⊕ c1

⊕ x3 . . .

k ⊕ cr−1

⊕ x3

k

⊕ y

1 round

xL xR
c0

⊞ ⊞x3

c1

⊞ ⊞x3

c2

⊞ ⊞x3

yL yR

Feistel-MiMC
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Poseidon

Rf

full rounds

RP
partial rounds

Rf

full rounds

. . .

AddC

xdxdxd

MDS

...

. . .

AddC

xd

MDS

...

. . .

AddC

xdxdxd

MDS

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M.

Schofnegger, 2021

⋆ S-box:
x ↦→ x3

⋆ Nb rounds:

R = 2× Rf + RP

= 8 + (from 56 to 84)
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Type I: Low-degree Primitives

Fast in plain

Many rounds

Often more constraints
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Type II: Primitives based on equivalence

Examples:

Rescue [AABDS20] / Rescue-Prime [SAD20]

Anemoi [BBCPSVW23]
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Rescue / Rescue-Prime

1 round

(2 steps)

. . . xdxdxd

MDS

AddC

. . . x1/dx1/dx1/d

MDS

AddC

...

. . . x1/dx1/dx1/d

MDS

AddC

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A.

Szepieniec, 2020

⋆ S-box:
x ↦→ x3 and x ↦→ x1/3

⋆ Nb rounds:

R = from 8 to 26

(2 S-boxes per round)
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Our approach

Need: verification using few multiplications.

⋆ First approach: evaluation using few multiplications, e.g. Poseidon [GKRRS21]

y ← E (x) ; E : low degree y == E (x) ; E : low degree

⋆ First breakthrough: using inversion, e.g. Rescue [AABDS20]

y ← E (x) ; E : high degree x == E−1(y) ; E−1: low degree

⋆ Our approach: using (u, v) = ℒ(x , y), where ℒ is linear

y ← F (x) ; F : high degree v == G (u) ; G : low degree

An Overview of AOPs: Design and Security Insights Clémence Bouvier 21 / 92
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CCZ-equivalence

Inversion

ΓF = {(x ,F (x)) , x ∈ Fq} and ΓF−1 =
{︀(︀

y ,F−1(y)
)︀
, y ∈ Fq

}︀
Noting that

ΓF =
{︀(︀

F−1(y), y
)︀
, y ∈ Fq

}︀
,

then, we have:

ΓF =

(︂
0 1
1 0

)︂
ΓF−1 .

Definition [Carlet, Charpin and Zinoviev, DCC98]

F : Fq → Fq and G : Fq → Fq are CCZ-equivalent if

ΓF = ℒ(ΓG ) + c , where ℒ is linear.

An Overview of AOPs: Design and Security Insights Clémence Bouvier 22 / 92
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Advantages of CCZ-equivalence

If F : Fq → Fq and G : Fq → Fq are CCZ-equivalent. Then

⋆ Differential properties are the same: 𝛿F = 𝛿G .

Differential uniformity

𝛿F = max
a ̸=0,b

|{x ∈ Fm
q ,F (x + a)− F (x) = b}|

⋆ Linear properties are the same: 𝒲F = 𝒲G .

Linearity

𝒲F = max
a,b ̸=0

⃒⃒⃒⃒
⃒⃒ ∑︁
x∈Fm

2n

(−1)a·x+b·F (x)

⃒⃒⃒⃒
⃒⃒
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Advantages of CCZ-equivalence

If F : Fq → Fq and G : Fq → Fq are CCZ-equivalent. Then

⋆ Verification is the same: if y ← F (x), v ← G (u) and (u, v) = ℒ(x , y)

y == F (x)? ⇐⇒ v == G (u)?

⋆ The degree is not preserved.

Example

in Fp where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

if F (x) = x5 then F−1(x) = x5−1

where

5−1 = 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332cccccccd
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The Flystel

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

Butterfly + Feistel ⇒ Flystel

A 3-round Feistel-network with

Q𝛾 : Fq → Fq and Q𝛿 : Fq → Fq two quadratic functions, and E : Fq → Fq a permutation

High-Degree
permutation

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

E−1

Q𝛿

Open Flystel ℋ.

Low-Degree
function

x2 y2

⊟

⊞ ⊞

x1 y1

Q𝛾 E Q𝛿

Closed Flystel 𝒱.

Γℋ = ℒ(Γ𝒱) s.t. ((x1, x2), (y1, y2)) = ℒ ( ((y2, x2), (x1, y1)) )
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Advantage of CCZ-equivalence

⋆ High-Degree Evaluation.

⋆ Low-Degree Verification.

(y1, y2) == ℋ(x1, x2)⇔ (x1, y1) == 𝒱(x2, y2)

High-Degree
permutation

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

E−1

Q𝛿

Open Flystel ℋ.

Example

if E : x ↦→ x5 in Fp where

p = 0x73eda753299d7d483339d80809a1d805

53bda402fffe5bfeffffffff00000001

then E−1 : x ↦→ x5−1
where

5−1 = 0x2e5f0fbadd72321ce14a56699d73f002

217f0e679998f19933333332cccccccd
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Flystel in F2n, n odd

Q𝛾(x) = 𝛾 + 𝛽x3 , Q𝛿(x) = 𝛿 + 𝛽x3 , and E (x) = x3

x1 x2

⊕

⊕

⊕
y1 y2

𝛾 + 𝛽x3

x1/3

𝛿 + 𝛽x3

Open Flystel2.

x2 y2

⊕

⊕ ⊕
x1 y1

𝛾 + 𝛽x3
x3 𝛿 + 𝛽x3

Closed Flystel2.
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Properties of Flystel in F2n, n odd

x1 x2

⊕

⊕

⊕

⊕

y1 y2

𝛾 + 𝛽x3

x1/3

x3

𝛿 + 𝛽x3

Degenerated Butterfly.

Introduced by [PUB16].

Theorems in [LTYW18] state that if 𝛽 ̸= 0:

⋆ Differential properties

𝛿ℋ = 𝛿𝒱 = 4

⋆ Linear properties

𝒲ℋ =𝒲𝒱 = 2n+1

⋆ Algebraic degree

⋆ Open Flystel2: degℋ = n
⋆ Closed Flystel2: deg𝒱 = 2
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Flystel in Fp

Q𝛾(x) = 𝛾 + 𝛽x2 , Q𝛿(x) = 𝛿 + 𝛽x2 , and E (x) = xd

x1 x2

⊟

⊟

⊞

y1 y2

𝛾 + 𝛽x2

x1/d

𝛿 + 𝛽x2

Open Flystelp.

usually
d = 3 or 5.

x2 y2

⊟

⊞ ⊞

x1 y1

𝛾 + 𝛽x2
xd 𝛿 + 𝛽x2

Closed Flystelp.

An Overview of AOPs: Design and Security Insights Clémence Bouvier 29 / 92



Introduction Anemoi Skyscraper HO differential attacks Algebraic attacks Linear attacks Conclusions

Properties of Flystel in Fp

⋆ Differential properties

Flystelp has a differential uniformity:

𝛿ℋ = max
a ̸=0,b

|{x ∈ F2
p,ℋ(x + a)−ℋ(x) = b}| ≤ d − 1

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over F2
p

⋆ Linear properties

Conjecture:

𝒲ℋ = max
a,b ̸=0

⃒⃒⃒⃒
⃒⃒∑︁
x∈F2

p

exp

(︂
2𝜋i(⟨a, x⟩ − ⟨b,ℋ(x)⟩)

p

)︂⃒⃒⃒⃒⃒⃒ ≤ p log p ?
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The SPN Structure

The internal state of Anemoi and its basic operations.

A Substitution-Permutation Network with:

x0 ... xℓ−1

y0 ... yℓ−1

(a) Internal state.

X i

Y i

C i

D i
+=

(b) The constant addition.

ℳx

ℳy =ℳx ∘ 𝜌

(c) The diffusion layer.

𝒫 𝒫 ... 𝒫 with 𝒫 =

[︂
2 1
1 1

]︂

(d) The Pseudo-Hadamard Transform.

ℋ ℋ ... ℋ

(e) The S-box layer.

An Overview of AOPs: Design and Security Insights Clémence Bouvier 31 / 92



Introduction Anemoi Skyscraper HO differential attacks Algebraic attacks Linear attacks Conclusions

The SPN Structure

yrℓ−1

yrℓ−2

.

.

.

yr2

yr1

yr0

drℓ−1drℓ−2
. . .dr2dr1dr0

⊞
⊞

⊞

⊞
⊞

ℳy

xrℓ−1

xrℓ−2

.

.

.

xr2

xr1

xr0

crℓ−1crℓ−2
. . .cr2cr1cr0

⊞
⊞

⊞

⊞
⊞

ℳx

⊞
⊞

⊞
⊞

⊞
⊞

⊞
⊞

⊞
⊞

ℋ

ℋ

ℋ

ℋ

ℋ

xr+1
ℓ−1

xr+1
ℓ−2

.

.

.

xr+1
2

xr+1
1

xr+1
0

yr+1
ℓ−1

yr+1
ℓ−2

.

.

.

yr+1
2

yr+1
1

yr+1
0

.

.

.
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Performance metric

What does “efficient” mean for Zero-Knowledge Proofs?

“It depends”

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

y = (ax + b)3(cx + d) + ex

t0 = a · x
t1 = t0 + b

t2 = t1 × t1

t3 = t2 × t1

t4 = c · x
t5 = t4 + d

t6 = t3 × t5

t7 = e · x
t8 = t6 + t7

3 constraints
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Some Benchmarks

** Numbers to be updated! **

m (= 2ℓ) RP Poseidon Griffin Anemoi

2 208 198 - 76
4 224 232 112 96
6 216 264 - 120

R1CS

8 256 296 176 160

2 312 380 - 191
4 560 832 260 316
6 756 1344 - 460

Plonk

8 1152 1920 574 648

2 156 300 - 126
4 168 348 168 168
6 162 396 - 216

AIR

8 192 456 264 288

(a) when d = 3.

m (= 2ℓ) RP Poseidon Griffin Anemoi

2 240 216 - 95
4 264 264 110 120
6 288 315 - 150

R1CS

8 384 363 162 200

2 320 344 - 212
4 528 696 222 344
6 768 1125 - 496

Plonk

8 1280 1609 492 696

2 200 360 - 210
4 220 440 220 280
6 240 540 - 360

AIR

8 320 640 360 480

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).
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Type II

Type II: Primitives based on equivalence

Slow in plain

Fewer rounds

Fewer constraints
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Type III: Primitives using Look-up-Tables

Examples:

Reinforced Concrete [GKLRSW22]

Skyscraper [BGKKRSS25]
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Example of Type III: Reinforced Concrete

Concrete

Bricks

Concrete

Bar Bar Bar

Concrete

Bricks

Concrete

...

...

L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger,

M. Schofnegger and R. Walch, 2022

⋆ S-box:
Decomp.

T T T . . . T

Comp.

⋆ Nb rounds:
R = 7
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Overview of Skyscraper

C. Bouvier, L. Grassi, D. Khovratovich, K. Koschatko, C. Rechberger, F. Schmid and M. Schofnegger, 2025

xL xR

yL yR

S1 ∘ S0

B3 ∘ B2

S5 ∘ S4

B7 ∘ B6

S9 ∘ S8

⋆ Square operation Si
⋆ Non-invertible x2

⋆ Good statistical properties

⋆ Speed-up via Montgomery

⋆ Bars operation Bi

⋆ Non-invertible S-Box B′

⋆ Applicable to any prime

⋆ High algebraic degree

⋆ Speed-up via efficient bit operations

x2/𝜎 + 𝛾i

x2/𝜎 + 𝛾i+1

⊞

⊞

B′(x) + 𝛾i

B′(x) + 𝛾i+1

⊞

⊞
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S-Box component B′

Examples: Let B′ : Fpn → Fpn for p = 28657 (15-bit prime)

T (v) =
(︀
v ⊕

(︀
(v ≪ 1)⊙ (v ≪ 2)⊙ (v ≪ 3)

)︀)︀
≪ 1

Case n = 1

17cd

17 cd

T T

d3 0e

d30e ≡ 631d

Case n = 2

1e83+ 142b · X

1e 83 14 2b

T T T T

17 28 46 bc

1728+ 46bc · X

Case n = 3

09ce+ 4aae · X + 2d7c · X 2

09 ce 4a ae 2d 7c

T T T T T T

d9 94 1d 1a fa 12

69a3+ 1d1a · X + 1a30 · X 2
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Security Issues

⋆ Recent analysis

⋆ Rebound attack by A. Bak [Bak25]

⋆ Truncated differential using ∼ 28.19 evaluations

⋆ Collision attack on 9-round version

⋆ No security margin

⋆ Skyscraper update

⋆ Increase number of rounds

⋆ Additional Squares impact native performance

⋆ Additional Bars impact ZKP performance

∆in ?

? ∆out

S1 ∘ S0

∆in 0

B5 ∘ B4

𝛽 𝛼

S9 ∘ S8

𝛼′ 𝛽′

B13 ∘ B12

0 ∆out

S17 ∘ S16

Pr = 1

Pr = 2−4.1

Inbound

Pr = 2−4.1

Pr = 1
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Potential extensions

Alternative 1

xL xR

yL yR

S2 ∘ S1 ∘ S0

S7 ∘ S6 ∘ S5

S12 ∘ S11 ∘ S10

B4 ∘ B3

B9 ∘ B8

Alternative 2

xL xR

yL yR

S1 ∘ S0

S2 ∘ S1

S7 ∘ S6

S11 ∘ S10

S13 ∘ S12

B5 ∘ B4

B9 ∘ B8

Alternative 3

xL xR

yL yR

S1 ∘ S0

B3 ∘ B2

S5 ∘ S4

B7 ∘ B6

S9 ∘ S8

B11 ∘ B10

S13 ∘ S12
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Some Benchmarks

** Numbers to be updated! **

Performance Comparison for BN254

Hash Function x86 ZK

Skyscraper 142 1 398

RC 1 510 5 670

Poseidon 11 324 1 200

Poseidon2 5 233 1 200

Rescue–Prime 230 950 630 2,000 4,000 6,000
102

103

104

105

Poseidon

Poseidon2

Rescue–Prime

Reinforced

Concrete

Skyscraper

Plonkish Performance (Area-degree product)
N
at
iv
e
x8
6
P
er
fo
rm

an
ce

[n
s]

Area-degree product = size of witness matrix × max. degree of polynomial that encodes a gate
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Type III: Primitives using Look-up-Tables

Faster in plain

Fewer rounds

Constraints depending on proof systems
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Take-away

Type I Type II Type III

Low-degree primitives Equivalence relation Look-up tables

Fm
q Fm

q
Alphabet

for various q and m for various q and m
specific fields

Nb of rounds many few fewer

Plain performance fast slow faster

it depends
Nb of constraints often more fewer

on the proof system

Feistel-MiMC Rescue Reinforced Concrete
Examples

Poseidon Anemoi Skyscraper
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CRYPTANALYSIS
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Cryptanalysis

Design

Type I

MiMC [AGRRT16] / Feistel-MiMC [AGRRT16]

Poseidon [GKRRS21]

Type II

Rescue [AABDS20] / Rescue-Prime [SAD20]

Anemoi [BBCPSVW23]

Type III

Reinforced-Concrete [GKLRSW22]

Skyscraper [BGKKRSS25]

Cryptanalysis

HO differential attacks [BCP22]

Algebraic attacks [BBLP22,
BBCPSVW23, BBLMOPR24]

Linear attacks [BB24]

An Overview of AOPs: Design and Security Insights Clémence Bouvier 46 / 92



Introduction Anemoi Skyscraper HO differential attacks Algebraic attacks Linear attacks Conclusions

Cryptanalysis

Design

Type I

MiMC [AGRRT16] / Feistel-MiMC [AGRRT16]

Poseidon [GKRRS21]

Type II

Rescue [AABDS20] / Rescue-Prime [SAD20]

Anemoi [BBCPSVW23]

Type III

Reinforced-Concrete [GKLRSW22]

Skyscraper [BGKKRSS25]

Cryptanalysis

HO differential attacks [BCP22]

Algebraic attacks [BBLP22,
BBCPSVW23, BBLMOPR24]

Linear attacks [BB24]

An Overview of AOPs: Design and Security Insights Clémence Bouvier 46 / 92



Introduction Anemoi Skyscraper HO differential attacks Algebraic attacks Linear attacks Conclusions

Higher-Order differential attacks

Exact algebraic degree of MiMC [BCP22]
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The block cipher MiMC

⋆ Minimize the number of multiplications in F2n .

⋆ Construction of MiMC3 [AGRRT16]:

⋆ n-bit blocks (n odd ≈ 129): x ∈ F2n

⋆ n-bit key: k ∈ F2n

⋆ decryption : replacing x3 by x s where
s = (2n+1 − 1)/3

r := ⌈n log3 2⌉ .

n 129 255 769 1025

r 82 161 486 647

Number of rounds for MiMC.

x

k

⊕ x3

k ⊕ c1

⊕ x3 . . .

k ⊕ cr−1

⊕ x3

k

⊕ y

1 round
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s = (2n+1 − 1)/3

r := ⌈n log3 2⌉ .

n 129 255 769 1025

r 82 161 486 647

Number of rounds for MiMC.

x x3

c1

⊕ x3 . . .

cr−1

⊕ x3 y

1 round
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Algebraic degree

Let F : Fn
2 → Fn

2. Using the isomorphism Fn
2 ≃ F2n ,

there is a unique univariate polynomial representation on F2n of degree at most 2n − 1:

F (x) =
2n−1∑︁
i=0

bix
i ; bi ∈ F2n

Algebraic degree

dega(F ) = max{wt(i), 0 ≤ i < 2n, and bi ̸= 0}

Example: degu(x ↦→ x3) = 3 and dega(x ↦→ x3) = 2.

If F : Fn
2 → Fn

2 is a permutation, then

dega(F ) ≤ n − 1
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Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace 𝒱 ⊂ Fn
2 with dim𝒱 ≥ dega(F ) + 1, we have a 0-sum distinguisher:⨁︁

x∈𝒱
F (x) = 0.

Random permutation: degree = n − 1

𝜅 E

x
n bits

y

n bits

(a) Block cipher

P

x
n bits

y

n bits

(b) Random permutation

E
P

?
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First Plateau

C. Bouvier, A. Canteaut and L. Perrin, 2024

x x3

c1

⊕ x3 . . .

cr−1

⊕ x3 y

1 round

Polynomial representing r rounds of MIMC3:

𝒫3,r (x) = Fr ∘ . . .F1(x) , where Fi = (x + ci−1)
3 .
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First Plateau

C. Bouvier, A. Canteaut and L. Perrin, 2024

x x3

c1

⊕ x3 . . .

cr−1

⊕ x3 y

1 round

Polynomial representing r rounds of MIMC3:

𝒫3,r (x) = Fr ∘ . . .F1(x) , where Fi = (x + ci−1)
3 .

Upper bound [EGLORSW20]:
⌈r log2 3⌉ .

Aim: determine
B r
3 := max

c
dega(𝒫3,r ) .
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First Plateau

C. Bouvier, A. Canteaut and L. Perrin, 2024

x x3

c1

⊕ x3 . . .

cr−1

⊕ x3 y

1 round

Polynomial representing r rounds of MIMC3:

𝒫3,r (x) = Fr ∘ . . .F1(x) , where Fi = (x + ci−1)
3 .

Example

⋆ Round 1: B1
3 = 2

𝒫3,1(x) = x3

3 = [11]2

⋆ Round 2: B2
3 = 2

𝒫3,2(x) = x9 + c1x
6 + c21x

3 + c31

9 = [1001]2 6 = [110]2 3 = [11]2
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Observed degree

Definition

There is a plateau between rounds r and
r + 1 whenever:

B r+1
3 = B r

3 .

Proposition

If d = 2j − 1, there is always a plateau between
rounds 1 and 2:

B2
d = B1

d .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2
4
6
8

10
12
14
16
18
20
22
24
26
28

Rounds

D
eg

re
e

MIMC3

Algebraic degree observed for n = 31.
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Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

ℰ3,r = {3×j mod (2n − 1) where j is covered by i , i ∈ ℰ3,r−1}

Missing exponents: no exponent 22k − 1

∀i ∈ ℰ3,r , i ̸≡ 5, 7 mod 8

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Representation of exponents. Missing exponents mod8.
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Example

𝒫3,1(x) = x3 so ℰ3,1 = {3} .

3 = [11]2
cover−→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[00]2 = 0

×3−→ 0

[01]2 = 1
×3−→ 3

[10]2 = 2
×3−→ 6

[11]2 = 3
×3−→ 9

ℰ3,2 = {0, 3, 6, 9} , indeed 𝒫3,2(x) = x9 + c1x
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Bounding the degree

Theorem

After r rounds of MIMC3, the algebraic degree is

B r
3 ≤ 2× ⌈⌊r log2 3⌋/2− 1⌉

If 3r < 2n − 1:

⋆ A lower bound

B r
3 ≥ max{wt(3i ), i ≤ r}

⋆ Upper bound
reached for almost
16265 rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2
4
6
8

10
12
14
16
18
20
22
24
26
28

Rounds

D
eg

re
e

Lower Bound

Upper Bound

Observed degree for MIMC3
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Tracing exponents

3
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Covered rounds

Idea of the proof:

⋆ inductive proof: existence of “good” ℓ s.t. 𝜔r−ℓ ∈ ℰ3,r−ℓ ⇒ 𝜔r ∈ ℰ3,r

Rounds for which we are able to exhibit a maximum-weight exponent.

0 19 247 12 53 359106 159 212 265 318 412 465

466 665518 624571 718571 718 771 824 16225 16265

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

rounds covered by the inductive procedure rounds not covered
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Plateau

Proposition

There is a plateau when kr = ⌊r log2 3⌋ = 1 mod 2 and kr+1 = ⌊(r + 1) log2 3⌋ = 0 mod 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Rounds

D
eg

re
e

MIMC3

If we have a plateau

B r
3 = B r+1

3 ,

Then the next one is

B r+4
3 = B r+5

3

or
B r+5
3 = B r+6

3 .
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Music in MIMC3

⋆ Patterns in sequence (⌊r log2 3⌋)r>0: denominators of semiconvergents of

log2(3) ≃ 1.5849625

D = { 1 , 2 , 3, 5, 7 , 12 , 17, 29, 41, 53 , 94, 147, 200, 253, 306, 359 , . . .} ,

log2(3) ≃
a

b
⇔ 2a ≃ 3b

⋆ Music theory:

⋆ perfect octave 2:1

⋆ perfect fifth 3:2

219 ≃ 312 ⇔ 27 ≃
(︂
3

2

)︂12

⇔ 7 octaves ∼ 12 fifths

x

k

⊕ x3

k ⊕ c1

⊕
;
�
�����

x3 . . .

k ⊕ cr−1

⊕
;
�
�����

x3

k

⊕
;
�
�����

y

An Overview of AOPs: Design and Security Insights Clémence Bouvier 58 / 92



Introduction Anemoi Skyscraper HO differential attacks Algebraic attacks Linear attacks Conclusions

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace 𝒱 ⊂ Fn
2 with dim𝒱 ≥ dega(F ) + 1, we have a 0-sum distinguisher:⨁︁

x∈𝒱
F (x) = 0.

Random permutation: degree = n − 1

𝜅 E

x
n bits

y

n bits

(a) Block cipher

P

x
n bits

y

n bits

(b) Random permutation

E
P

?
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Comparison to previous work

First Bound: ⌈r log2 3⌉ Exact degree: 2× ⌈⌊r log2 3⌋/2− 1⌉ .

4 6 8 10 12 14 16 18 20 22 24

4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

Rounds

D
eg

re
e

Bound from [EGL+20]

Exact degree (our result)

For n = 129, MIMC3 = 82 rounds

Rounds Time Data Source

80/82 2128xor 2128 [EGL+20]

81/82 2128xor 2128 Our

80/82 2125xor 2125 Our

Secret-key distinguishers (n = 129)
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Take-away

A better understanding of the algebraic degree of MiMC

⋆ guarantee on the degree of MIMC3

⋆ upper bound on the algebraic degree

2× ⌈⌊r log2 3⌋/2− 1⌉ .

⋆ bound tight, up to 16265 rounds

⋆ minimal complexity for higher-order differential attack

Missing exponents in the
univariate representation

Bounds on the algebraic degree Higher-Order differential attacks

???
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Algebraic attacks

Trick to bypass SPN rounds [BBLP22]

Importance of the modeling [BBCPSVW23]

Importance of the ordering [BBLMOPR24]
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CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let P : Ft
q → Ft

q and u < t.

The CICO problem is:

Finding X ,Y ∈ Ft−u
q s.t. P(X , 0u) = (Y , 0u).

x0 x1 0

y0 y1 0

P

when t = 3, u = 1.

Ethereum Challenges: solving CICO problem for AO primitives with q ∼ 264 prime

⋆ Feistel–MiMC [AGRRT16]

⋆ Poseidon [GKRRS21]

⋆ Rescue–Prime [SAD20]

⋆ Reinforced Concrete [GKLRSW22]
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Solving polynomial systems

⋆ Univariate solving: find the roots of 𝒫j ∈ Fq[X ]⎧⎪⎪⎨⎪⎪⎩
𝒫0(X ) = 0

...

𝒫m−1(X ) = 0 .

⋆ Multivariate solving: find the roots of 𝒫j ∈ Fq[X0, . . . ,Xn−1]⎧⎪⎪⎨⎪⎪⎩
𝒫0(X0, . . . ,Xn−1) = 0

...

𝒫m−1(X0, . . . ,Xn−1) = 0 .

⋆ Compute a grevlex order GB (F5 algorithm)

⋆ Convert it into lex order GB (FGLM algorithm)

⋆ Find the roots in Fn
q of the GB polynomials using univariate system resolution.
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Trick for SPN

A. Bariant, C. Bouvier, G. Leurent and L. Perrin, 2022

Let P = P0 ∘ P1 be a permutation of F3
p and suppose

∃ V ,G ∈ F3
p, s.t. ∀ X ∈ Fp, P−1

0 (XV + G ) = (*, *, 0) .

x0 x1 0

y0 y1 0

P

P
o
ly
n
o
m
ia
l
sy
st
em

(a) R-round system.

XV + G

x0 x1 0

y0 y1 0

P0

P1

P
o
ly
n
o
m
ia
l
sy
st
em

P
r
=

1

(b) (R − 2)-round system.
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Poseidon

Rf

full rounds

RP
partial rounds

Rf

full rounds

. . .

AddC

xdxdxd

MDS

...

. . .

AddC

xd

MDS

...

. . .

AddC

xdxdxd

MDS

⋆ S-box:
x ↦→ x3

⋆ Nb rounds:

R = 2× Rf + RP

= 8 + (from 3 to 24)

???

x0 x1 0

y0 y1 0

P0

P1

P
o
ly
n
o
m
ia
l
sy
st
em

2
ro
u
n
d
s
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Trick for Poseidon

*

c00⊞

*

c01⊞

0

c02⊞

x3 x3 x3

* * (c02 )
3

M

A0X1/3 − c10 A1X1/3 − c11 g1/3 − c12

c10 c11 c12⊞ ⊞ ⊞

x3 x3 x3

A0
3X A1

3X g

(a) First two rounds.

* * 0

(A0
3X, A1

3X, g)

* * 0

P0

P1

R
−

2
ro
u
n
d
s

2
ro
u
n
d
s

(b) Overview.
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Rescue–Prime

1 round

(2 steps)

. . . xdxdxd

MDS

AddC

. . . x1/dx1/dx1/d

MDS

AddC

...

. . . x1/dx1/dx1/d

MDS

AddC

⋆ S-box:
x ↦→ x3 and x ↦→ x1/3

⋆ Nb rounds:

R = from 4 to 8

(2 S-boxes per round)

???

x0 x1 0

y0 y1 0

P0

P1

P
o
ly
n
o
m
ia
l
sy
st
em

1
ro
u
n
d
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Trick for Rescue–Prime

*

C0
0⊞

*

C0
1⊞

0

C0
2⊞

x3 x3 x3

* * C0
2

M

A0X3 A1X3 g3

x1/3 x1/3 x1/3

A0
1/3X A1

1/3X g

(a) First round.

* * 0

(A0
1/3X, A1

1/3X, g)

* * 0

P0

P1

R
−

1
ro
u
n
d
s

1
ro
u
n
d

(b) Overview.
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Cryptanalysis Challenge

Security
Category Parameters

level
Bounty

Easy r = 6 9 $2, 000

Easy r = 10 15 $4, 000

Medium r = 14 22 $6, 000

Hard r = 18 28 $12, 000

Hard r = 22 34 $26, 000

(a) Feistel–MiMC

Security
Category Parameters

level
Bounty

Easy N = 4,m = 3 25 $2, 000

Easy N = 6,m = 2 25 $4, 000

Medium N = 7,m = 2 29 $6, 000

Hard N = 5,m = 3 30 $12, 000

Hard N = 8,m = 2 33 $26, 000

(b) Rescue–Prime

Security
Category Parameters

level
Bounty

Easy RP = 3 8 $2, 000

Easy RP = 8 16 $4, 000

Medium RP = 13 24 $6, 000

Hard RP = 19 32 $12, 000

Hard RP = 24 40 $26, 000

(c) Poseidon

Security
Category Parameters

level
Bounty

Easy p = 281474976710597 24 $4, 000

Medium p = 72057594037926839 28 $6, 000

Hard p = 18446744073709551557 32 $12, 000

(d) Reinforced Concrete

$26,
000
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Modeling of Anemoi

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

Xi Yi

ci di⊞ ⊞

⊞

⊞

X ′
i Y ′

i

Y ′
i Yi+1

⊟

⊞ ⊞

X ′
i Xi+1

𝛽x2 + 𝛾 xd 𝛽x2 + 𝛿

Model 1.

Xi Yi

ci di⊞ ⊞

⊞

⊞

X ′
i Y ′

i

Vi

Xi+1 Yi+1

𝛽x2 + 𝛾⊟

x1/d ⊟

𝛽x2 + 𝛿⊞

Model 2.
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Importance of modeling

3 4 5 6 7 8

10−2

10−1

100

101

102

103

104

105

Rounds

T
im

e

d = 3 (Model 1)

d = 3 (Model 2)

d = 5 (Model 1)

d = 5 (Model 2)

d = 7 (Model 1)

d = 7 (Model 2)
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FreeLunch attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

⋆ Define the system

⋆ Compute a grevlex order GB (F5 algorithm)

⋆ Convert it into lex order GB (FGLM algorithm)

⋆ Find the roots in Fn
q of the GB polynomials using univariate system resolution.

Impact on the security of:

⋆ Griffin (CICO solution for 7 out of 10 rounds)

⋆ Arion

⋆ Anemoi (need some tweak)
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Take-away

Lessons for future design:

⋆ try as many modeling as possible

⋆ try as many ordering as possible

⋆ prefer univariate instead of multivariate system

⋆ be careful of tricks to bypass rounds

Algebraic attacks on AOP: a new lucrative business?

⋆ Ethereum Challenges (Nov. 2021)

Feistel-MiMC, Poseidon, Rescue-Prime, Reinforced-Concrete

⋆ Ethereum Initiative (Nov. 2024)
Poseidon
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Linear attacks

Solving conjecture for the Flystel [BB24]
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Linearity

Definition

Let F : Fn
q → Fm

q be a function and 𝜔 a primitive character. The Walsh transform for the
character 𝜔 of the linear approximation (u, v) of F is given by

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) .

𝒲F
u,v = qn · CF

u,v

Definition

The Linearity ℒF of F : Fn
q → Fm

q is the highest Walsh coefficient.

ℒF = max
u,v ̸=0

⃒⃒
𝒲F

u,v

⃒⃒
.
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Flystel - Definition

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

x1/d

Q𝛿

Open variant.{︃
y1 = x1 − Q𝛾(x2) + Q𝛿(x2 − (x1 − Q𝛾(x2))

1/d)

y2 = x2 − (x1 − Q𝛾(x2))
1/d .

x1 x2

⊟

⊞ ⊞

y1 y2

Q𝛾 xd Q𝛿

Closed variant.{︃
y1 = (x1 − x2)

d +Q𝛾(x1)

y2 = (x1 − x2)
d +Q𝛿(x2) .

An Overview of AOPs: Design and Security Insights Clémence Bouvier 77 / 92



Introduction Anemoi Skyscraper HO differential attacks Algebraic attacks Linear attacks Conclusions

Closed Flystel in F2n

x1 x2

⊕

⊕ ⊕

y1 y2

𝛾 + 𝛽x3 x3 𝛿 + 𝛽x3

Closed Flystel.

ℒF = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒ ∑︁
x∈F2

2n

(−1)(⟨v ,F(x)⟩−⟨u,x⟩)

⃒⃒⃒⃒
⃒⃒

Bound

Linearity bound for the Flystel:

ℒF ≤ 2n+1
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Closed Flystel in Fp

x1 x2

⊟

⊞ ⊞

y1 y2

𝛾 + 𝛽x2 xd 𝛿 + 𝛽x2

Closed Flystel.

d is a small integer s.t.

x ↦→ xd is a permutation of Fp

(usually d = 3, 5).

ℒF = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒∑︁
x∈F2

p

e(
2i𝜋
p )(⟨v ,F(x)⟩−⟨u,x⟩)

⃒⃒⃒⃒
⃒⃒

How to determine an accurate bound for the linearity of the Closed Flystel in Fp?
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Weil bound

Proposition [Weil, 1948]

Let f ∈ Fp[x ] be a univariate polynomial with deg(f ) = d . Then

ℒf ≤ (d − 1)
√
p

x1 x2

⊟

⊞ ⊞

y1 y2

𝛾 + 𝛽x2 xd 𝛿 + 𝛽x2

Closed Flystel.

ℒF ≤ (d − 1)p
√
p ?

⎧⎪⎨⎪⎩
ℒ𝛾+𝛽x2 ≤ √p ,

ℒxd ≤ (d − 1)
√
p ,

ℒ𝛿+𝛽x2 ≤ √p .

Conjecture

ℒF = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒∑︁
x∈F2

p

e(
2i𝜋
p )(⟨v ,F(x)⟩−⟨u,x⟩)

⃒⃒⃒⃒
⃒⃒ ≤ p log p
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Experimental results
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0
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1,000

1,500

2,000

p

ℒ
F

d = 3

Weil Bound: 2 p3/2

d = 5

Weil Bound: 4 p3/2

d = 7

Weil Bound: 6 p3/2

d = 11

Weil Bound: 10 p3/2

Conjecture: p log p
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Experimental results (d = 3)
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Experimental results (d = 5)
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Exponential sums

T. Beyne and C. Bouvier, 2024

⋆ Applications of results for exponential sums (generalization of Weil bound)

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) → S(f ) =
∑︁
x∈Fn

q

e(
2i𝜋
p )·f (x) .

⋆ Theorem of Deligne [Del74]

⋆ Theorem of Denef and Loeser [DL91]

⋆ Theorem of Rojas-León [Roj06]

⋆ Functions with 2 variables F ∈ Fq[x1, x2].

⋆ Generalized Butterfly construction

⋆ 3-round Feistel construction

⋆ Generalized Flystel construction
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Flystel - Definition

Let x ↦→ xd be a permutation, and Q𝛾 , Q𝛾 quadratic functions.

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

x1/d

Q𝛿

Open variant.{︃
y1 = x1 − Q𝛾(x2) + Q𝛿(x2 − (x1 − Q𝛾(x2))

1/d)

y2 = x2 − (x1 − Q𝛾(x2))
1/d .

x1 x2

⊟

⊞ ⊞

y1 y2

Q𝛾 xd Q𝛿

Closed variant.{︃
y1 = (x1 − x2)

d +Q𝛾(x1)

y2 = (x1 − x2)
d +Q𝛿(x2) .
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Generalized Flystel - Definition

Let F = Flystel[H1,G,H2], with G : Fq → Fq a permutation, H1,H2 : Fq → Fq functions.

x1 x2

⊟

⊟

⊞

y1 y2

H1

G−1

H2

Open variant.{︃
y1 = x1 − H1(x2) + H2(x2 − G−1(x1 − H1(x2)))

y2 = x2 − G−1(x1 − H1(x2)) .

x1 x2

⊟

⊞ ⊞

y1 y2

H1 G H2

Closed variant.{︃
y1 = G(x1 − x2) + H1(x1)

y2 = G(x1 − x2) + H2(x2) .
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Generalized Flystel - Results

Let F = Flystel[H1,G,H2] with H1, G and H2 monomials.

ℒF ≤ (deg G− 1)(max{deg H1, deg H2} − 1) · q

0 100 200 300 400 500 600

0

1,000

2,000

3,000

4,000

5,000

q

ℒ
F

deg G = 3, max{deg H1, deg H2} = 2

Bound: 2 q

deg G = 5,max{deg H1, deg H2} = 2

Bound: 4 q

deg G = 5,max{deg H1, deg H2} = 3

Bound: 8 q

Low-degree permutations G, H1 and H2.
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Solving conjecture

Conjecture

Let F = Flystel[H1,G,H2] be defined by H1(x) = 𝛾 + 𝛽x2, G(x) = xd and H2 = 𝛿 + 𝛽x2,
with 𝛾, 𝛿 ∈ Fp and 𝛽 ∈ F×

p . Then
ℒF ≤ p log p .

Conjecture proved for d ≤ log p

Proposition

Let F = Flystel[H1,G,H2] be defined by H1(x) = 𝛾 + 𝛽x2, G(x) = xd and H2 = 𝛿 + 𝛽x2,
with 𝛾, 𝛿 ∈ Fp and 𝛽 ∈ F×

p . Then

ℒF ≤ (d − 1)p .
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Solving conjecture
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p

ℒ
F

Conjecture: p log p

d = 3

Bound: 2 p

d = 5

Bound: 4 p
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Take-away

⋆ Bounds on exponential sums have direct application to linear cryptanalysis

⋆ 3 different results... for 3 important constructions

⋆ Deligne, 1974 Generalization of the Butterfly construction
⋆ Denef and Loeser, 1991 3-round Feistel network
⋆ Rojas-León, 2006 Generalization of the Flystel construction

F ∈ Fq[x1, x2], ∃C ∈ Fq, ℒF ≤ C × q

⋆ Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

Perspectives:

⋆ Can we refine bounds in particular for small degree functions over smaller prime fields?

⋆ Can we generalize to other constructions?
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Website

stap-zoo.com
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Conclusions

⋆ Many new primitives have been proposed

Anemoi, Skyscraper and many others...

⋆ Some cryptanalysis progress have been done

In particular for algebraic attacks.

Cryptanalysis and design of AOPs remain to be explored

Thank you
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