0 differential attacks 00000000000000000

Algebraic attacks

Linear attacks 000000000000000000

Conclusions 00

An Overview of Arithmetization-Oriented Primitives Design and Security Insights

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

APSIA Seminar, Esch-sur-Alzette, Luxembourg February 21st, 2025

M

New symmetric primitives

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

A need for new primitives

Protocols requiring new primitives:

- * FHE: Fully Homomorphic Encryption
- * MPC: Multiparty Computation
- * ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

A need for new primitives

Protocols requiring new primitives:

- * FHE: Fully Homomorphic Encryption
- * MPC: Multiparty Computation
- * ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

And analyse their security!

Block ciphers

★ input: *n*-bit block

 $x \in \mathbb{F}_2^n$

 \star parameter: *k*-bit key

 $\kappa \in \mathbb{F}_2^k$

★ output: n-bit block

 $y = E_{\kappa}(x) \in \mathbb{F}_2^n$

 \star symmetry: E and E^{-1} use the same κ

(a) Block cipher

(b) Random permutation

Block ciphers

★ input: *n*-bit block

 $x \in \mathbb{F}_2^n$

 \star parameter: *k*-bit key

 $\kappa \in \mathbb{F}_2^k$

 \star output: *n*-bit block

 $y = E_{\kappa}(x) \in \mathbb{F}_2^n$

 \star symmetry: *E* and *E*⁻¹ use the same κ

A block cipher is a family of 2^k permutations of \mathbb{F}_2^n .

(a) Block cipher

(b) Random permutation

Iterated constructions

How to build an efficient block cipher?

By iterating a round function.

Performance constraints! The primitive must be fast.

SPN construction

SPN = Substitution Permutation Networks

SPN construction

SPN = Substitution Permutation Networks

Introduction

Hash functions

Definition

Hash function: $H : \mathbb{F}_q^{\ell} \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

Hash functions

Definition

Hash function: $H : \mathbb{F}_q^{\ell} \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

* **Preimage resistance**: Given y it must be *infeasible* to find x s.t. H(x) = y.

* Collision resistance: It must be *infeasible* to find $x \neq x'$ s.t. H(x) = H(x').

Sponge construction

Sponge construction

Parameters:

- \star rate r > 0
- \star capacity c > 0
- * permutation of \mathbb{F}_q^n (n = r + c)

Sponge construction

Sponge construction

Parameters:

- \star rate r > 0
- \star capacity c > 0
- * permutation of \mathbb{F}_q^n (n = r + c)

P is an iterated construction

New symmetric primitives

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

What does "efficient" mean for Zero-Knowledge Proofs?

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

 $y = (ax + b)^3(cx + d) + ex$

$t_0 = a \cdot x$	$t_3 = t_2 \times t_1$	$t_6 = t_3 \times t_5$
$t_1 = t_0 + b$	$t_4 = c \cdot x$	$t_7 = e \cdot x$
$t_2 = t_1 imes t_1$	$t_5 = t_4 + d$	$t_8 = t_6 + t_7$

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

 $y = (ax + b)^3(cx + d) + ex$

$t_0 = a \cdot x$	$t_3 = t_2 \times t_1$	$t_6 = t_3 \times t_5$
$t_1 = t_0 + b$	$t_4 = c \cdot x$	$t_7 = e \cdot x$
$t_2 = t_1 imes t_1$	$t_5 = t_4 + d$	$t_8 = t_6 + t_7$

3 constraints

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

Comparison with the traditional case

Traditional case

$$y \leftarrow E(x)$$

* Optimized for: implementation in software/hardware

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

* Optimized for: integration within advanced protocols

Algebraic attacks 00000000000000

Comparison with the traditional case

Traditional case

$$y \leftarrow E(x)$$

- Optimized for: implementation in software/hardware
- * Alphabet size:

 \mathbb{F}_2^n , with $n \simeq 4, 8$

Ex: Field of AES: \mathbb{F}_{2^n} where n = 8

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
 - Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_p where p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

Algebraic attacks

Comparison with the traditional case

Traditional case

$$y \leftarrow E(x)$$

- Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4, 8$
- * Operations: logical gates/CPU instructions

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$
- Operations: large finite-field arithmetic

differential attacks A

Algebraic attacks

Comparison with the traditional case

Traditional case

$$y \leftarrow E(x)$$

- Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4, 8$
- * Operations: logical gates/CPU instructions

Cryptanalysis

Decades of analysis

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$
- Operations: large finite-field arithmetic

Cryptanalysis

 \leq 8 years of analysis

ZKP Primitives overview

Clémence Bouvier

Skyscraper 0000000000

Algebraic attacks

Linear attacks

Conclusions

DESIGN

An Overview of AOPs: Design and Security Insights

Design

Cryptanalysis

Anemoi 20000000000000000000 Skyscraper 0000000000 differential attacks

Algebraic attacks

Conclusions

Design

Cryptanalysis

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

Skyscraper 00000000000 0 differential attacks 00000000000000000 Algebraic attacks

inear attacks

Conclusions

Type I: Low-degree Primitives

Examples:

MiMC [AGRRT16] / Feistel-MiMC [AGRRT16] Poseidon [GKRRS21]

MiMC / Feistel-MiMC

M. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen, 2016

- ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
- ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
- * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$
- \star 82 rounds when n = 129

MiMC / Feistel-MiMC

M. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen, 2016

- ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
- ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$

Introduction

- \star decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$
- \star 82 rounds when n = 129

Feistel-MiMC

Poseidon

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, 2021

★ S-box:

 $x \mapsto x^3$

★ Nb rounds:

 $R = 2 \times Rf + RP$ = 8 + (from 56 to 84)

Introduction 0000000000000000

Skyscraper 00000000000 0 differential attacks 00000000000000000 Algebraic attacks

inear attacks

Conclusions

Type I: Low-degree Primitives

Fast in plain

Many rounds Often more constraints

An Overview of AOPs: Design and Security Insights

Introduction

 Skyscraper 0000000000

Algebraic attacks

inear attacks

Conclusions

Type II: Primitives based on equivalence

Examples:

Rescue [AABDS20] / Rescue-Prime [SAD20] Anemoi [BBCPSVW23] Anemoi

Rescue / Rescue-Prime

1 round

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, 2020

★ S-box:

 $x \mapsto x^3$ and $x \mapsto x^{1/3}$

* Nb rounds:

R =from 8 to 26 (2 S-boxes per round)

Skyscraper 0000000000) differential attacks

Algebraic attacks

Conclusions

Our approach

Need: verification using few multiplications.

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. Poseidon [GKRRS21]

 \rightsquigarrow *E*: low degree

$$y == E(x)$$

 $\sim E$: low degree

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. Poseidon [GKRRS21]

- * First breakthrough: using inversion, e.g. Rescue [AABDS20]
 - $y \leftarrow E(x)$ $\sim E$: high degree $x == E^{-1}(y)$ $\sim E^{-1}$: low degree

Need: verification using few multiplications.

- * First approach: evaluation using few multiplications, e.g. Poseidon [GKRRS21]
- $y \leftarrow E(x)$ $\rightarrow E$: low degree y == E(x) $\rightarrow E$: low degree
- * First breakthrough: using inversion, e.g. Rescue [AABDS20]
 - $y \leftarrow E(x)$ $\rightarrow E$: high degree $x == E^{-1}(y)$ $\rightarrow E^{-1}$: low degree
- * **Our approach:** using $(u, v) = \mathcal{L}(x, y)$, where \mathcal{L} is linear

 $y \leftarrow F(x)$

 \sim *F*: high degree

$$v == G(u)$$

 \rightsquigarrow G: low degree

CCZ-equivalence

Inversion

Anemoi

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_{q}\} \text{ and } \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_{q}\}$$

Noting that

$$\Gamma_{\textit{F}} = \left\{ \left(\textit{F}^{-1}(y), y\right), y \in \mathbb{F}_q \right\} \;,$$

then, we have:

$$\Gamma_{\boldsymbol{F}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\boldsymbol{F}^{-1}} \ .$$

CCZ-equivalence

Inversion

Anemoi

An Overview of AOPs: Design and Security Insights

$$\Gamma_{F} = \{ (x, F(x)), x \in \mathbb{F}_{q} \} \text{ and } \Gamma_{F^{-1}} = \{ (y, F^{-1}(y)), y \in \mathbb{F}_{q} \}$$

Noting that

$$\Gamma_{\textit{F}} = \left\{ \left(\textit{F}^{-1}(y), y\right), y \in \mathbb{F}_q \right\} \;,$$

then, we have:

$$\label{eq:Gamma} \Gamma_{\textit{F}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\textit{F}^{-1}} \ .$$

Clémence Bouvier

Definition [Carlet, Charpin and Zinoviev, DCC98]

$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if
 $\Gamma_F = \mathcal{L}(\Gamma_G) + c$, where \mathcal{L} is linear.

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 $\star\,$ Differential properties are the same: $\delta_{\it F}\,=\,\delta_{\it G}$.

Differential uniformity

Anemoi

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}|$$

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F}~=~\delta_{\it G}$.

Differential uniformity

Linearity

Anemoi

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}|$$

 \star Linear properties are the same: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.

$$\mathcal{W}_{F} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_{2^{n}}^{m}} (-1)^{a \cdot x + b \cdot F(x)} \right|$$

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

Anemoi

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

 $y == F(x)? \iff v == G(u)?$

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is **not preserved**.

Anemoi

Example

in \mathbb{F}_p where

 $p = 0 x 73 eda 753299 d7 d483339 d80809 a 1 d80553 b da 402 {\tt ffe5bfefffffff00000001}$

if $F(x) = x^5$ then $F^{-1}(x) = x^{5^{-1}}$ where

 ${\bf 5^{-1}} = {\tt 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332cccccccd}$

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is **not preserved**.

Anemoi

Example

in \mathbb{F}_p where

 $p = 0 x 73 eda 753299 d7 d483339 d80809 a 1 d80553 b da 402 {\tt ffe5bfefffffff00000001}$

if $F(x) = x^5$ then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = \texttt{0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332cccccccd}$

The **FLYSTEL**

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

 $\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \mathrm{FLYSTEL}$

A 3-round Feistel-network with

Anemoi

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

The **FLYSTEL**

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

 $\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \mathrm{FLYSTEL}$

A 3-round Feistel-network with

Anemoi

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

Clémence Bouvier

★ High-Degree Evaluation.

Open FLYSTEL \mathcal{H} .

Example
$f E : x \mapsto x^5$ in \mathbb{F}_p where
p = 0x73eda $753299d7d483339d80809a1d80553$ bda $402fffe5$ bfeffffffff00000001
then $E^{-1}: x \mapsto x^{5^{-1}}$ where
5 ⁻¹ = 0x2e5f0fbadd72321ce14a56699d73f002 217f0e679998f19933333332cccccccd

Advantage of CCZ-equivalence

- ★ High-Degree Evaluation.
- * Low-Degree Verification.

$$(y_1, y_2) == \mathcal{H}(x_1, x_2) \Leftrightarrow (x_1, y_1) == \mathcal{V}(x_2, y_2)$$

Open FLYSTEL \mathcal{H} .

Closed Flystel \mathcal{V} .

FLYSTEL in \mathbb{F}_{2^n} , *n* odd

 $Q_{\gamma}(x) = \gamma + \beta x^3$, $Q_{\delta}(x) = \delta + \beta x^3$, and $E(x) = x^3$

Anemoi

Closed Flystel₂.

Open Flystel₂.

Anemoi

Degenerated Butterfly.

Introduced by [PUB16].

Theorems in [LTYW18] state that if $\beta \neq 0$:

 \star Differential properties

Properties of FLYSTEL in \mathbb{F}_{2^n} , *n* odd

- $\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$
- * Linear properties
- $\mathcal{W}_{\mathcal{H}} = \mathcal{W}_{\mathcal{V}} = 2^{n+1}$
- * Algebraic degree
 - * Open Flystel₂: deg_H = n
 - * Closed Flystel₂: deg_V = 2

FLYSTEL in \mathbb{F}_p

 $Q_{\gamma}(x) = \gamma + \beta x^2$, $Q_{\delta}(x) = \delta + \beta x^2$, and $E(x) = x^d$

Open Flystel_p.

Anemoi

Closed Flystel_p.

Properties of FLYSTEL in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a
eq 0, b} |\{x \in \mathbb{F}_{p}^{2}, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \leq d-1$$

Anemoi Skyscraper HO differential attacks Algebraic attacks Concorrection $Properties of FLYSTEL in F_{p}$

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \leq d-1$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

Properties of FLYSTEL in \mathbb{F}_p

* Differential properties

Anemoi

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a
eq 0, b} |\{x \in \mathbb{F}_{
ho}^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \leq d-1$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

* Linear properties

Conjecture:

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \le p \log p ?$$

Clémence Bouvier

The internal state of Anemoi and its basic operations.

A Substitution-Permutation Network with:

<i>x</i> ₀	 $x_{\ell-1}$
<i>y</i> 0	 $y_{\ell-1}$

Anemoi

(a) Internal state.

(b) The constant addition.

(c) The diffusion layer.

(d) The Pseudo-Hadamard Transform.

$\begin{array}{c c} \uparrow & \uparrow \\ \mathcal{H} & \mathcal{H} \\ \downarrow & \downarrow \end{array}$		$\begin{array}{c} \uparrow \\ \mathcal{H} \\ \downarrow \end{array}$
--	--	--

(e) The S-box layer.

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

 $y = (ax + b)^3(cx + d) + ex$

$t_0 = a \cdot x$	$t_3 = t_2 \times t_1$	$t_6 = t_3 \times t_5$
$t_1 = t_0 + b$	$t_4 = c \cdot x$	$t_7 = e \cdot x$
$t_2 = t_1 imes t_1$	$t_5 = t_4 + d$	$t_8 = t_6 + t_7$

3 constraints

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

HU differential attacks

Algebraic attacks

-

C 100

Some Benchmarks

	$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi
	2	208	198	-	76
DICS	4	224	232	112	96
RICS	6	216	264	-	120
	8	256	296	176	160
	2	312	380	-	191
Dlank	4	560	832	260	316
PIONK	6	756	1344	-	460
	8	1152	1920	574	648
	2	156	300	-	126
	4	168	348	168	168
АК	6	162	396	-	216
	8	192	456	264	288

	$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi
R1CS	2	240	216	-	95
	4	264	264	110	120
	6	288	315	-	150
	8	384	363	162	200
	2	320	344	-	212
Dlank	4	528	696	222	344
FIORK	6	768	1125	-	496
	8	1280	1609	492	696
	2	200	360	-	210
AIR	4	220	440	220	280
	6	240	540	-	360
	8	320	640	360	480

(a) when d = 3.

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

Anemoi 0000000000000000000000

Skyscraper 0000000000 0 differential attacks 00000000000000000 Algebraic attacks

Some Benchmarks

** Numbers to be updated! **

	$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi		$m (= 2\ell)$	RP	Poseidon	Griffin	An
R1CS	2	208	198	-	76		2	240	216	-	
	4	224	232	112	96	D1CS	4	264	264	110	
	6	216	264	-	120	RICS	6	288	315	-	
	8	256	296	176	160		8	384	363	162	
	2	312	380	-	191		2	320	344	-	
	4	560	832	260	316	Plonk	4	528	696	222	
PIONK	6	756	1344	-	460		6	768	1125	-	
	8	1152	1920	574	648		8	1280	1609	492	
AIR	2	156	300	-	126		2	200	360	-	1
	4	168	348	168	168	AIR	4	220	440	220	
	6	162	396	-	216		6	240	540	-	
	8	192	456	264	288		8	320	640	360	

(a) when d = 3.

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

Anemoi 0000000000000000000 Skyscraper 0000000000 0 differential attacks

Algebraic attacks

Linear attacks

Conclusions

Type II

Type II: Primitives based on equivalence

Slow in plain

Fewer rounds

Fewer constraints

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

Introduction 00000000000000000 Anemoi 200000000000000000000 Skyscraper •0000000000 IO differential attacks

Algebraic attacks

inear attacks. 0000000000000000000000

Conclusions

Type III: Primitives using Look-up-Tables

Examples:

Reinforced Concrete [GKLRSW22]

Skyscraper [BGKKRSS25]

An Overview of AOPs: Design and Security Insights

Example of Type III: Reinforced Concrete

L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger and R. Walch, 2022

★ S-box:

Decomp.	
Comp.	

 \star Nb rounds:

R = 7

Overview of Skyscraper

C. Bouvier, L. Grassi, D. Khovratovich, K. Koschatko, C. Rechberger, F. Schmid and M. Schofnegger, 2025

Overview of Skyscraper

C. Bouvier, L. Grassi, D. Khovratovich, K. Koschatko, C. Rechberger, F. Schmid and M. Schofnegger, 2025

 \star Square operation S_i

Skyscraper

- * Non-invertible x^2
- * Good statistical properties
- * Speed-up via Montgomery

Overview of Skyscraper

C. Bouvier, L. Grassi, D. Khovratovich, K. Koschatko, C. Rechberger, F. Schmid and M. Schofnegger, 2025

 \star Square operation S_i

Skyscraper

00000000

- * Non-invertible x^2
- * Good statistical properties
- * Speed-up via Montgomery
- \star Bars operation B_i
 - \star Non-invertible S-Box B'
 - * Applicable to any prime
 - \star High algebraic degree
 - * Speed-up via efficient bit operations

ntroduction Anemoi **Skyscraper** HO differential attacks Algebraic attacks Linear attacks Conclusions

S-Box component B'

Examples: Let $B' : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ for p = 28657 (15-bit prime)

$$T(v) = (v \oplus ((\overline{v} \ll 1) \odot (v \ll 2) \odot (v \ll 3))) \ll 1$$

Case n = 1

S-Box component B'

Examples: Let $B' : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ for p = 28657 (15-bit prime)

Skyscraper

$$T(\mathbf{v}) = \left(\mathbf{v} \oplus \left(\left(\overline{\mathbf{v}} \ll 1\right) \odot \left(\mathbf{v} \ll 2\right) \odot \left(\mathbf{v} \ll 3\right)\right)\right) \ll 1$$

Case
$$n = 2$$

S-Box component B'

Examples: Let $\mathsf{B}':\mathbb{F}_{p^n}\to\mathbb{F}_{p^n}$ for p=28657 (15-bit prime)

Skyscraper

$$T(v) = (v \oplus ((\overline{v} \ll 1) \odot (v \ll 2) \odot (v \ll 3))) \ll 1$$

Case n = 3

Security Issues

 \star Recent analysis

- * Rebound attack by A. Bak [Bak25]
- \star Truncated differential using $\sim 2^{8.19}$ evaluations
- ★ Collision attack on 9-round version
- ⋆ No security margin

Security Issues

★ Recent analysis

- * Rebound attack by A. Bak [Bak25]
- \star Truncated differential using $\sim 2^{8.19}$ evaluations
- ★ Collision attack on 9-round version
- ⋆ No security margin

- \star Skyscraper update
 - ★ Increase number of rounds
 - * Additional Squares impact native performance
 - * Additional Bars impact ZKP performance

Potential extensions

Alternative 1

Potential extensions

Alternative 1

Alternative 2

Potential extensions

Skyscraper

Alternative 1

Alternative 3

Some Benchmarks

Performance Comparison for BN254

Hash Function	×86	ZK	
Skyscraper	142	1 398	
RC	1510	5 670	
Poseidon	11 324	1 200	
Poseidon2	5 233	1 200	
Rescue–Prime	230 950	630	

Area-degree product = size of witness matrix imes max. degree of polynomial that encodes a gate

Some Benchmarks

** Numbers to be updated! **

Performance Comparison for BN254

Hash Function	×86	ZK	
Skyscraper	142	1 398	
RC	1 510	5 670	
Poseidon	11 324	1 200	
Poseidon2	5 233	1 200	
Rescue–Prime	230 950	630	

Area-degree product = size of witness matrix imes max. degree of polynomial that encodes a gate

Skyscraper 000000000000

IO differential attacks

Algebraic attacks

inear attacks 2000000000000000000000

Conclusions

Type III: Primitives using Look-up-Tables

Faster in plain

Fewer rounds

Constraints depending on proof systems

An Overview of AOPs: Design and Security Insights

Take-away

	Туре І	Type II	Type III	
	Low-degree primitives	Equivalence relation	Look-up tables	
Alphabet	\mathbb{F}_q^m \mathbb{F}_q^m		specific fields	
	for various <i>q</i> and <i>m</i>	for various <i>q</i> and <i>m</i>		
Nb of rounds	many	few	fewer	
Plain performance fast		slow	faster	
Nb of constraints	often more	fewer	it depends	
		Tewer	on the proof system	
Fyamples	Feistel-MiMC	Rescue	Reinforced Concrete	
	Poseidon	Anemoi	Skyscraper	

Introduction 00000000000000000

Skyscraper 0000000000

D differential attacks 0000000000000000 Algebraic attacks

Linear attacks

Conclusions

CRYPTANALYSIS

An Overview of AOPs: Design and Security Insights

Cryptanalysis

Cryptanalysis

Cryptanalysis

Introduction 00000000000000000

Skyscraper 00000000000 Algebraic attacks

Conclusions

Higher-Order differential attacks

Exact algebraic degree of MiMC [BCP22]

The block cipher MiMC

HO differential attacks

- $\star\,$ Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- * Construction of MiMC₃ [AGRRT16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$r := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.

The block cipher MiMC

HO differential attacks

- $\star\,$ Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- * Construction of MiMC₃ [AGRRT16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - ★ decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$r:=\lceil n\log_3 2\rceil.$$

п	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.

Algebraic degree

HO differential attacks

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Algebraic degree

$$\deg^{a}(F) = \max\{\operatorname{wt}(i), \ 0 \leq i < 2^{n}, \ \operatorname{and} \ b_{i} \neq 0\}$$

Algebraic degree

HO differential attacks

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Algebraic degree

$$\deg^{a}(F) = \max\{\operatorname{wt}(i), \ 0 \leq i < 2^{n}, \ \text{and} \ b_{i} \neq 0\}$$

Example: $\deg^{u}(x \mapsto x^{3}) = 3$ and $\deg^{a}(x \mapsto x^{3}) = 2$.

Algebraic degree

HO differential attacks

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Algebraic degree

$$\deg^{a}(F) = \max\{\operatorname{wt}(i), \ 0 \leq i < 2^{n}, \ \text{and} \ b_{i} \neq 0\}$$

Example:
$$\deg^u(x \mapsto x^3) = 3$$
 and $\deg^a(x \mapsto x^3) = 2$.

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg^a(F) \leq \textit{n}-1$$

Higher-Order differential attacks

HO differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Higher-Order differential attacks

HO differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Ρ

. ×

C. Bouvier, A. Canteaut and L. Perrin, 2024

Polynomial representing *r* rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \ldots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

C. Bouvier, A. Canteaut and L. Perrin, 2024

Polynomial representing *r* rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \ldots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [EGLORSW20]:

 $\lceil r \log_2 3 \rceil$.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r}) \, .$$

C. Bouvier, A. Canteaut and L. Perrin, 2024

Polynomial representing *r* rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \ldots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Example

* Round 1:
$$B_3^1 = 2$$

$$\mathcal{P}_{3,1}(x) = x^3$$

 $3 = [11]_2$

C. Bouvier, A. Canteaut and L. Perrin, 2024

Polynomial representing *r* rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \ldots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Example

\star Round 1:	$B_3^1 = 2$	* Round 2: $B_3^2 = 2$
	$\mathcal{P}_{3,1}(x) = x^3$	$\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$
	$3 = [11]_2$	$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Clémence Bouvier

HO differential attacks

Observed degree

Definition

There is a **plateau** between rounds *r* and r + 1 whenever:

$$B_3^{r+1} = B_3^r$$

Proposition

If $d = 2^j - 1$, there is always a **plateau** between rounds 1 and 2:

 $B_d^2 = B_d^1$.

Observed degree

HO differential attacks

Definition

There is a **plateau** between rounds r and r + 1 whenever:

$$B_3^{r+1} = B_3^r$$
 .

Proposition

If $d = 2^j - 1$, there is always a **plateau** between rounds 1 and 2:

٠

$$B_d^2 = B_d^1$$

Algebraic degree observed for n = 31.

Clémence Bouvier

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

 $\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$

Missing exponents

HO differential attacks

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 imes j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, \ i \in \mathcal{E}_{3,r-1}\}$$

Example

$$\mathcal{P}_{3,1}(x) = x^3$$
 so $\mathcal{E}_{3,1} = \{3\}$.

$$3 = [11]_2 \xrightarrow{\text{cover}} \begin{cases} [00]_2 = 0 & \xrightarrow{\times 3} & 0\\ [01]_2 = 1 & \xrightarrow{\times 3} & 3\\ [10]_2 = 2 & \xrightarrow{\times 3} & 6\\ [11]_2 = 3 & \xrightarrow{\times 3} & 9 \end{cases}$$

 $\mathcal{E}_{3,2} = \{0,3,6,9\}$, indeed $\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$.

Missing exponents

HO differential attacks

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Missing exponents: no exponent $2^{2k} - 1$

 $\forall i \in \mathcal{E}_{3,r}, i \not\equiv 5,7 \mod 8$

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

Representation of exponents.

Missing exponents mod8.

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

Bounding the degree

Theorem

After r rounds of MIMC₃, the algebraic degree is

 $B_3^{\mathbf{r}} \leq 2 \times \left\lceil \lfloor \mathbf{r} \log_2 3 \rfloor / 2 - 1 \right\rceil$

HO differential attacks

Theorem

After r rounds of MIMC₃, the algebraic degree is

 $B_3^r \le 2 \times \left\lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \right\rceil$

If $3^r < 2^n - 1$:

 \star A lower bound

 $B_3^r \geq \max\{\operatorname{wt}(3^i), i \leq r\}$

 Upper bound reached for almost 16265 rounds

Clémence Bouvier

3

Round 1

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

Round 1

Round 2

Round 1

Round 2

Round 3

HO differential attacks

HO differential attacks

Round 1

Tracing exponents

Tracing exponents

Round 1	Round 2	Round 3	
An Overview of AOPs: Design an	nd Security Insights	Clémence Bouvier	

Round 4

Covered rounds

HO differential attacks

Idea of the proof:

 \star inductive proof: existence of "good" ℓ s.t. $\omega_{r-\ell} \in \mathcal{E}_{3,r-\ell} \Rightarrow \omega_r \in \mathcal{E}_{3,r}$

Rounds for which we are able to exhibit a maximum-weight exponent.

Clémence Bouvier

Covered rounds

HO differential attacks

Idea of the proof:

- \star inductive proof: existence of "good" ℓ s.t. $\omega_{r-\ell} \in \mathcal{E}_{3,r-\ell} \Rightarrow \omega_r \in \mathcal{E}_{3,r}$
- MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

Plateau

Proposition

There is a plateau when $k_r = \lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$

An Overview of AOPs: Design and Security Insights

Plateau

Proposition

There is a plateau when $k_r = \lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$

An Overview of AOPs: Design and Security Insights

Music in MIMC₃

HO differential attacks

* Patterns in sequence $(\lfloor r \log_2 3 \rfloor)_{r>0}$: denominators of semiconvergents of $\log_2(3) \simeq 1.5849625$ $\mathfrak{D} = \{1, 2, 3, 5, \overline{7}, \overline{12}, 17, 29, 41, \overline{53}, 94, 147, 200, 253, 306, \overline{359}, \ldots\},$ $\log_2(3) \simeq \frac{a}{b} \Leftrightarrow 2^a \simeq 3^b$ * Music theory: * perfect octave 2:1 * perfect fifth 3:2 $\Leftrightarrow 7 \text{ octaves} \simeq 12 \text{ fifths}$

6

Clémence Bouvier

Higher-Order differential attacks

HO differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Ρ

. ×

Comparison to previous work

HO differential attacks

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

Comparison to previous work

HO differential attacks

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	2^{128} XOR	2 ¹²⁸	[EGL+20]
<mark>81</mark> /82	$2^{128}\mathrm{XOR}$	2 ¹²⁸	Our
80/82	$2^{125}\mathrm{XOR}$	2 ¹²⁵	Our

Secret-key distinguishers (n = 129)

A better understanding of the algebraic degree of MiMC

- * guarantee on the degree of MIMC₃
 - $\star\,$ upper bound on the algebraic degree

- \star bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

A better understanding of the algebraic degree of MiMC

- * guarantee on the degree of MIMC₃
 - $\star\,$ upper bound on the algebraic degree

 $2 \times \left\lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \right\rceil$.

- \star bound tight, up to 16265 rounds
- \star minimal complexity for higher-order differential attack

Missing exponents in the univariate representation

A better understanding of the algebraic degree of MiMC

- * guarantee on the degree of MIMC₃
 - \star upper bound on the algebraic degree

- \star bound tight, up to 16265 rounds
- * minimal complexity for higher-order differential attack

A better understanding of the algebraic degree of MiMC

- * guarantee on the degree of MIMC₃
 - $\star\,$ upper bound on the algebraic degree

- \star bound tight, up to 16265 rounds
- \star minimal complexity for higher-order differential attack

A better understanding of the algebraic degree of MiMC

- * guarantee on the degree of MIMC₃
 - \star upper bound on the algebraic degree

- \star bound tight, up to 16265 rounds
- \star minimal complexity for higher-order differential attack

Anemoi 000000000000000000000 Skyscraper 0000000000 0 differential attacks

Algebraic attacks

Conclusions

Algebraic attacks

Trick to bypass SPN rounds [BBLP22]

Importance of the modeling [BBCPSVW23]

Importance of the ordering [BBLMOPR24]

CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t. The **CICO** problem is:

Finding
$$X, Y \in \mathbb{F}_q^{t-u}$$
 s.t. $P(X, 0^u) = (Y, 0^u)$.

when t = 3, u = 1.

CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t. The **CICO** problem is: Finding $X, Y \in \mathbb{F}_q^{t-u}$ s.t. $P(X, 0^u) = (Y, 0^u)$.

when t = 3, u = 1.

Ethereum Challenges: solving CICO problem for AO primitives with $q \sim 2^{64}$ prime

- ⋆ Feistel–MiMC [AGRRT16]
- * Poseidon [GKRRS21]

- * Rescue–Prime [SAD20]
- * Reinforced Concrete [GKLRSW22]

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

Solving polynomial systems

Algebraic attacks

* **Univariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

$$\begin{cases} \mathcal{P}_0(X) &= 0 \\ \vdots \\ \mathcal{P}_{m-1}(X) &= 0 \end{cases}.$$

Solving polynomial systems

Algebraic attacks

★ **Univariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

$$\begin{cases} \mathcal{P}_0(X) = 0 \\ \vdots \\ \mathcal{P}_{m-1}(X) = 0 \end{cases}$$

★ **Multivariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X_0, ..., X_{n-1}]$

$$\begin{cases} \mathcal{P}_{0}(X_{0},...,X_{n-1}) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X_{0},...,X_{n-1}) &= 0 \\ \end{cases}$$

- * Compute a grevlex order GB (F5 algorithm)
- * Convert it into lex order GB (FGLM algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

Trick for SPN

Algebraic attacks

A. Bariant, C. Bouvier, G. Leurent and L. Perrin, 2022

Let $P = P_0 \circ P_1$ be a permutation of \mathbb{F}_p^3 and suppose

Introduction 0000000000000000000

okyscraper 200000000000 0 differential attacks

Algebraic attacks

inear attacks Con

Poseidon

★ S-box:

 $x \mapsto x^3$

 \star Nb rounds:

 $R = 2 \times Rf + RP$ = 8 + (from 3 to 24)

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

Skyscraper 0000000000 10 differential attacks 000000000000000000 Algebraic attacks

Linear attacks Co

Conclusions

Trick for Poseidon

(b) Overview.

Trick for Rescue–Prime

(b) Overview.

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty		Category	Parameters	Security level	Bount	у
Easy	r = 6	9	\$2,000		Easy	N = 4, m = 3	25	\$2,00	θ-
Easy	r = 10	15	\$4,000		Easy	N = 6, m = 2	25	\$4,00	0
Medium	r = 14	22	\$6,000		Medium	N = 7, m = 2	29	\$6,00	0
Hard	r = 18	28	\$12,000		d	N = 5, m = 3	30	\$12,0	00
Hard	r = 22	3 4	\$26,000	00		N = 8, m = 2	33	\$26,0	00
Category	Parameters	Security	Bounty	_					
Category	Parameters	Security level	Bounty	Cate	gory Param	neters		Security level	Βοι
Category Easy	Parameters $\frac{RP = 3}{PR = 3}$	Security level	Bounty \$2,000	Cate	gory Param	neters	,	Security level	Bou
Category Easy Easy	Parameters $\frac{RP = 3}{RP = 8}$ RP = 12	Security level	Bounty \$2,000 \$4,000	Cate Easy	gory Param $p = 2$	neters 81474976710597	7	Security level 24	Boi \$4,
Category Easy Hedium	Parameters $\frac{RP = 3}{RP = 8}$ $\frac{RP = 13}{RP = 10}$	Security level 8 16 24 22	Bounty \$2,000 \$4,000 \$6,000 \$12,000	Cate Easy Med	gory Param $p = 2$ ium $p = 7$	neters 81474976710597 20575940379268	, 339	Security level 24 28 22	Bou \$4, \$6,
Category Easy Hedium Hard	Parameters $\frac{RP = 3}{RP = 8}$ $\frac{RP = 13}{RP = 19}$ $RP = 19$	Security level 3 16 24 32 40	Bounty \$2,000 \$4,000 \$6,000 \$12,000 \$26,000	Cate Easy Med Harc	gory Param p = 2 ium $p = 7$ l = p = 1	neters 81474976710597 20575940379268 84467440737095	, 339 551557	Security level 24 28 32	Bou \$4, \$6, \$12

(c) Poseidon

Modeling of Anemoi

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

Model 1.

Algebraic attacks

Importance of modeling

FreeLunch attack

Algebraic attacks

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

- \star Define the system
- * Compute a grevlex order GB (**F5** algorithm)
- * Convert it into lex order GB (FGLM algorithm)
- * Find the roots in \mathbb{F}_{a}^{n} of the GB polynomials using univariate system resolution.

FreeLunch attack

Algebraic attacks

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

- \star Define the system
- \star Compute a grevlex order GB (F5 algorithm) \sim can be skipped
- * Convert it into lex order GB (FGLM algorithm)
- * Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

Impact on the security of:

- * Griffin (CICO solution for 7 out of 10 rounds)
- ★ Arion
- * Anemoi (need some tweak)

Lessons for future design:

- \star try as many modeling as possible
- * try as many ordering as possible
- * prefer univariate instead of multivariate system
- * be careful of tricks to bypass rounds

Lessons for future design:

- * try as many modeling as possible
- * try as many ordering as possible
- * prefer univariate instead of multivariate system
- * be careful of tricks to bypass rounds

Algebraic attacks on AOP: a new lucrative business?

* Ethereum Challenges (Nov. 2021)

Feistel-MiMC, Poseidon, Rescue-Prime, Reinforced-Concrete

* Ethereum Initiative (Nov. 2024)

Poseidon

Skyscraper 0000000000 differential attacks

Algebraic attacks

Linear attacks

Conclusions

Linear attacks

Solving conjecture for the Flystel [BB24]

An Overview of AOPs: Design and Security Insights

Linearity

Definition

Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function and ω a primitive character. The Walsh transform for the character ω of the linear approximation (u, v) of F is given by

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}$$

$$\mathcal{W}^{\mathsf{F}}_{u,v} = q^n \cdot C^{\mathsf{F}}_{u,v}$$

Linearity

Definition

Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function and ω a primitive character. The Walsh transform for the character ω of the linear approximation (u, v) of F is given by

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_{a}^{n}} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}$$

$$\mathcal{W}^{\mathsf{F}}_{u,v} = q^n \cdot C^{\mathsf{F}}_{u,v}$$

Definition

The Linearity \mathcal{L}_{F} of $\mathsf{F}: \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}^{m}$ is the highest Walsh coefficient.

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v
eq 0} \left| \mathcal{W}_{u,v}^{\mathsf{F}}
ight| \; .$$

An Overview of AOPs: Design and Security Insights

Clémence Bouvier

Flystel - Definition

$$\begin{cases} y_1 &= (x_1 - x_2)^d + Q_{\gamma}(x_1) \\ y_2 &= (x_1 - x_2)^d + Q_{\delta}(x_2) \,. \end{cases}$$

$$\begin{cases} y_1 &= x_1 - \mathsf{Q}_{\gamma}(x_2) + \mathsf{Q}_{\delta}(x_2 - (x_1 - \mathsf{Q}_{\gamma}(x_2))^{1/d}) \\ y_2 &= x_2 - (x_1 - \mathsf{Q}_{\gamma}(x_2))^{1/d} . \end{cases}$$

Closed Flystel in \mathbb{F}_{2^n}

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_{2^n}^2} (-1)^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$$

Bound $\label{eq:Linearity} \mbox{ bound for the Flystel:} $ \mathcal{L}_{\mathsf{F}} \leq 2^{n+1} $$

Closed Flystel in \mathbb{F}_p

Closed Flystel.

d is a small integer s.t. $x \mapsto x^d$ is a permutation of \mathbb{F}_p (usually d = 3, 5).

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right) \left(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle \right)} \right|$$

$$\begin{array}{l} d \text{ is a small integer s.t.} \\ x \mapsto x^d \text{ is a permutation of } \mathbb{F}_p \\ (\text{usually } d = 3, 5). \end{array}$$

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v\neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right)(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$$

How to determine an accurate bound for the linearity of the Closed Flystel in \mathbb{F}_{p} ?

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with deg(f) = d. Then

 $\mathcal{L}_f \leq (d-1)\sqrt{p}$

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with deg(f) = d. Then

 $\mathcal{L}_f \leq (d-1)\sqrt{p}$

 $\mathcal{L}_{\mathsf{F}} \leq$

$$(d-1)p\sqrt{p} ? \qquad egin{cases} \mathcal{L}_{\gamma+eta x^2} &\leq \sqrt{p} \ , \ \mathcal{L}_{x^d} &\leq (d-1)\sqrt{p} \ , \ \mathcal{L}_{\delta+eta x^2} &\leq \sqrt{p} \ . \end{cases}$$

((

Linear attacks

Conjecture $\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right)(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right| \le p \log p$

Experimental results

Experimental results (d = 3)

Experimental results (d = 5)

Exponential sums

T. Beyne and C. Bouvier, 2024

* Applications of results for exponential sums (generalization of Weil bound)

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \quad \rightarrow \quad S(f) = \sum_{x \in \mathbb{F}_q^n} e^{\left(\frac{2i\pi}{p}\right) \cdot f(x)}$$

- * Theorem of Deligne [Del74]
- * Theorem of Denef and Loeser [DL91]
- * Theorem of Rojas-León [Roj06]

Exponential sums

T. Beyne and C. Bouvier, 2024

* Applications of results for exponential sums (generalization of Weil bound)

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \quad \rightarrow \quad S(f) = \sum_{x \in \mathbb{F}_q^n} e^{\left(\frac{2i\pi}{p}\right) \cdot f(x)}$$

- * Theorem of Deligne [Del74]
- * Theorem of Denef and Loeser [DL91]
- * Theorem of Rojas-León [Roj06]
- ★ Functions with 2 variables $F \in \mathbb{F}_q[x_1, x_2]$.
 - * Generalized Butterfly construction
 - * 3-round Feistel construction
 - * Generalized Flystel construction

Flystel - Definition

Let $x \mapsto x^d$ be a permutation, and Q_{γ} , Q_{γ} quadratic functions.

Closed variant.

$$\begin{cases} y_1 &= (x_1 - x_2)^d + Q_{\gamma}(x_1) \\ y_2 &= (x_1 - x_2)^d + Q_{\delta}(x_2) \,. \end{cases}$$

Generalized Flystel - Definition

Let $F = FLYSTEL[H_1, G, H_2]$, with $G : \mathbb{F}_q \to \mathbb{F}_q$ a permutation, $H_1, H_2 : \mathbb{F}_q \to \mathbb{F}_q$ functions.

Generalized Flystel - Results

Let $F = FLYSTEL[H_1, G, H_2]$ with H_1 , G and H_2 monomials.

 $\mathcal{L}_{\mathsf{F}} \leq (\mathsf{deg}\,\mathsf{G}-1)(\mathsf{max}\{\mathsf{deg}\,\mathsf{H}_1,\mathsf{deg}\,\mathsf{H}_2\}-1)\cdot q$

Solving conjecture

Conjecture

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then $\mathcal{L}_F .$

An Overview of AOPs: Design and Security Insights

Solving conjecture

Conjecture

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then $\mathcal{L}_F .$

Conjecture proved for $d \leq \log p$

Proposition

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then

$$\mathcal{L}_{\mathsf{F}} \leq (\textit{d}-1) p$$
 .

Take-away

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results... for 3 important constructions
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction 3-round Feistel network Generalization of the Flystel construction

Linear attacks

$$\mathsf{F} \in \mathbb{F}_q[\mathbf{x_1}, \mathbf{x_2}], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C imes q$$

* Solving conjecture on the linearity of the Flystel construction in Anemoi

Take-away

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results... for 3 important constructions
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction 3-round Feistel network Generalization of the Flystel construction

Linear attacks

$$\mathsf{F} \in \mathbb{F}_q[\mathbf{x}_1, \mathbf{x}_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C imes q$$

* Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

Take-away

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results... for 3 important constructions
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction 3-round Feistel network Generalization of the Flystel construction

Linear attacks

$$\mathsf{F} \in \mathbb{F}_q[x_1, x_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C imes q$$

 \star Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

Perspectives:

- * Can we refine bounds in particular for small degree functions over smaller prime fields?
- * Can we generalize to other constructions?

Skyscraper 00000000000) differential attacks

Algebraic attacks

Linear attacks

Conclusions

Website

stap-zoo.com

STAP Zoo

'AP primitive types STAP use-ca

ases All STAP prim

STAP

Symmetric Techniques for Advanced Protocols

The term STAP (Symmetric Techniques for Advanced Protocols) was first introduced in STAP2.3, and fillated workshop of Eurocrypt23.1 to generally refers to algorithms in symmetric cryptography specifically designed to be efficient in new advanced cryptographic protocols. These contexts include zero-knowledge (Zk) proofs, secure multiparty computation (MPC) and flully) homemorphic encryption (FHE) environments. It encompasses everything from arithmetization-oriented hash functions to homemorphic encryption-friendly steam ciphers.

* Many new primitives have been proposed

Anemoi, Skyscraper and many others...

 \star Many new primitives have been proposed

Anemoi, Skyscraper and many others...

* Some cryptanalysis progress have been done

In particular for algebraic attacks.

* Many new primitives have been proposed

Anemoi, Skyscraper and many others...

* Some cryptanalysis progress have been done

In particular for algebraic attacks.

Cryptanalysis and design of AOPs remain to be explored

* Many new primitives have been proposed

Anemoi, Skyscraper and many others...

* Some cryptanalysis progress have been done

In particular for algebraic attacks.

Cryptanalysis and design of AOPs remain to be explored

