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New symmetric primitives
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A new context

Traditional case

Alphabet

Operations based on logical gates or CPU
instructions.

Fn
2, with n ≃ 4, 8

Cryptanalysis

Decades of cryptanalysis

⋆ algebraic attacks ✓

⋆ differential attacks ✓

⋆ linear attacks ✓

⋆ ...

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arith-
metic.

Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 32

Cryptanalysis

≤ 8 years of cryptanalysis

⋆ algebraic attacks ✓

⋆ differential attacks ✗

⋆ linear attacks ✗

⋆ ...
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Characters

Definition

A character of a finite abelian group G is a homomorphism

𝜒 : G → C× ,

where C× is the multiplicative group of nonzero complex numbers.

In particular, we have
𝜒(1) = 1 ,

and for a1, a2 ∈ G
𝜒(a1a2) = 𝜒(a1)𝜒(a2) .

𝜒(a) is a root of unity

Definition

A linear approximation of F : Fn
q → Fm

q is a pair of characters (𝜒, 𝜓).
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Correlation of linear approximations

Definition

The correlation of the linear approximation (𝜒, 𝜓) of F : Fn
q → Fm

q is

CF
𝜒,𝜓 =

1

qn

∑︁
x∈Fn

q

𝜒
(︀
F(x)

)︀
𝜓(−x) .

Let 𝜔 be a primitive character, Fq → C× s.t. 𝜒(F(x)) = 𝜔⟨v ,F(x)⟩ and 𝜓(x) = 𝜔⟨u,x⟩. Then

CF
𝜒,𝜓 =

1

qn

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) .

Examples:

⋆ If F : Fn
2 → Fm

2 , then

CF
u,v =

1

2n

∑︁
x∈Fn2

(−1)(⟨v,F(x)⟩+⟨u,x⟩) .

⋆ If F : Fn
p → Fm

p , then

CF
u,v =

1

pn

∑︁
x∈Fnp

e

(︁
2i𝜋
p

)︁
(⟨v,F(x)⟩−⟨u,x⟩)

.
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Walsh transform

Definition

The Walsh transform for the character 𝜔 of the linear approximation (u, v) of F : Fn
q → Fm

q

is given by

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) .

𝒲F
u,v = qn · CF

u,v

Definition

The Linearity ℒF of F : Fn
q → Fm

q is the highest Walsh coefficient.

ℒF = max
u,v∈Fq,v ̸=0

⃒⃒
𝒲F

u,v

⃒⃒
.
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Closed Flystel in F2n

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x1 x2

⊕

⊕ ⊕

y1 y2

𝛾 + 𝛽x3 x3 𝛿 + 𝛽x3

Closed Flystel.

Bounds

⋆ Correlation bound

|CF
u,v | ≤ 1/2n−1

⋆ Walsh transform bound

|𝒲F
u,v | ≤ 2n+1

⋆ Linearity bound

ℒF ≤ 2n+1
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Closed Flystel in Fp

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x1 x2

⊟

⊞ ⊞

y1 y2

𝛾 + 𝛽x2 xd 𝛿 + 𝛽x2

Closed Flystel.

d is a small integer s.t.

x ↦→ xd is a permutation of Fp

(usually d = 3, 5).

ℒF =
∑︁
x∈F2

p

e(
2i𝜋
p )(⟨v ,F(x)⟩−⟨u,x⟩)

How to determine an accurate bound for the linearity of the Closed Flystel in Fp?
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Weil bound

Proposition [Weil, 1948]

Let f ∈ Fp[x ] be a univariate polynomial with deg(f ) = d . Then

ℒf ≤ (d − 1)
√
p

x1 x2

⊟

⊞ ⊞

y1 y2

𝛾 + 𝛽x2 xd 𝛿 + 𝛽x2

Closed Flystel.

ℒF ≤ (d − 1)p
√
p ?

⎧⎪⎨⎪⎩
ℒ𝛾+𝛽x2 ≤ √

p ,

ℒxd ≤ (d − 1)
√
p ,

ℒ𝛿+𝛽x2 ≤ √
p .

Conjecture

ℒF =
∑︁
x∈F2

p

e(
2i𝜋
p )(⟨v ,F(x)⟩−⟨u,x⟩) ≤ p log p
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Experimental results
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Weil Bound: 10 p3/2

Conjecture: p log p
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Experimental results (d = 3)
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Experimental results (d = 5)
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Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

⋆ Applications of results for exponential sums (generalization of Weil bound)

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) → S(f ) =
∑︁
x∈Fn

q

𝜔f (x) .

⋆ Fq is a finite field s.t. q is a power of a prime p.

⋆ Functions with 2 variables F ∈ Fq[x1, x2].
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Generalizations of Weil bound

⋆ Deligne bound

⋆ Application to the Generalized Butterfly construction

⋆ Denef and Loeser bound

⋆ Application to 3-round Feistel construction

⋆ Rojas-León bound

⋆ Application to the Generalized Flystel construction
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Butterfly - Definition

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, F2
2n , n odd.

R−1

R

x1 x2

⊕

⊕

⊕

⊕

y1 y2

𝛽x3

x1/3

×𝛼

x3

𝛽x3

×𝛼

Open variant.{︃
y1 = (x2 + 𝛼y2)

3 + (𝛽y2)
3

y2 = (x1 − (𝛽x2)
3)1/3 − 𝛼x2 .

R

R

x1 x2

⊕

⊕

y1

x3

𝛽x3

×𝛼

⊕

⊕

y2

x3

𝛽x3

×𝛼

Closed variant.{︃
y1 = (x1 + 𝛼x2)

3 + (𝛽x2)
3

y2 = (x2 + 𝛼x1)
3 + (𝛽x1)

3 .
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Generalized Butterfly - Definition

Butterfly[G,H, 𝛼], with G : Fq → Fq a permutation, H : Fq → Fq a function and 𝛼 ∈ Fq.

R−1

R

x1 x2

⊟

⊟

⊞

⊞

y1 y2

H

G−1

×𝛼

G

H

×𝛼

Open variant.{︃
y1 = G(x2 + 𝛼y2) + H(y2)

y2 = G−1(x1 − H(x2))− 𝛼x2 .

R

R

x1 x2

⊞

⊞

y1

G

H

×𝛼

⊞

⊞

y2

G

H

×𝛼

Closed variant.{︃
y1 = G(x1 + 𝛼x2) + H(x2)

y2 = G(x2 + 𝛼x1) + H(x1) .
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Smoothness

Definition

Let f ∈ Fq[x1, . . . , xn]. A hypersurface defined by f = 0 is smooth, if the system

f = 𝜕f /𝜕x1 = · · · = 𝜕f /𝜕xn = 0

has no non zero solutions.

Examples:

⋆ f (x1, x2) = 2x1
3 + x2

2 = 0 is smooth, since

𝜕f /𝜕x1 = 6x1
2 and 𝜕f /𝜕x2 = 2x2 ,

so that

f = 𝜕f /𝜕x1 = 𝜕f /𝜕x2 = 0 ⇔ (x1, x2) = (0, 0) .

⋆ f (x1, x2) = x1
2 + x2

2 − 2x2 + 1 = 0 is not smooth, since

𝜕f /𝜕x1 = 2x1 and 𝜕f /𝜕x2 = 2x2 − 2 ,
so that

f = 𝜕f /𝜕x1 = 𝜕f /𝜕x2 = 0 ⇔ (x1, x2) = (0, 1) .
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Deligne Theorem

Theorem [Deligne, 1974]

Let q be a power of a prime p.
Let f ∈ Fq[x1, . . . , xn] be a polynomial of degree d , with gcd(d , p) = 1.
Let fd be the degree d homogeneous component of f , i.e.

f = fd + g , deg(g) < d .

If the hypersurface defined by fd = 0 is smooth, then, we have

|S(f )| =

⃒⃒⃒⃒
⃒⃒∑︁
x∈Fn

q

𝜔f (x)

⃒⃒⃒⃒
⃒⃒ ≤ (d − 1)n · qn/2 .

Linearity bound for n = 2: ℒF ≤ (d − 1)2 · q.
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Motivation Delign applied to Butterflies Denef and Loeser applied to 3-round Feistel Rojas-León applied to Flystel Conclusions

Deligne Theorem

Theorem [Deligne, 1974]

Let q be a power of a prime p.
Let f ∈ Fq[x1, . . . , xn] be a polynomial of degree d , with gcd(d , p) = 1.
Let fd be the degree d homogeneous component of f , i.e.

f = fd + g , deg(g) < d .

If the hypersurface defined by fd = 0 is smooth, then, we have

|S(f )| =

⃒⃒⃒⃒
⃒⃒∑︁
x∈Fn

q

𝜔f (x)

⃒⃒⃒⃒
⃒⃒ ≤ (d − 1)n · qn/2 .

Linearity bound for n = 2: ℒF ≤ (d − 1)2 · q.

Some Applications of Algebraic Geometry to Linear Cryptanalysis Clémence Bouvier 18 / 42



Motivation Delign applied to Butterflies Denef and Loeser applied to 3-round Feistel Rojas-León applied to Flystel Conclusions

Generalized Butterfly - Bound

Let F = Butterfly[G,H, 𝛼], with G a permutation, H a function and 𝛼 in Fq.

f (x1, x2) = ⟨(v1, v2),F(x1, x2)⟩ − ⟨(u1, u2), (x1, x2)⟩
= v1G(x1 + 𝛼x2) + v2G(x2 + 𝛼x1) + v1H(x2) + v2H(x1)− u1x1 − u2x2 .

R

R

x1 x2

⊞

⊞

y1

G

H

×𝛼

⊞

⊞

y2

G

H

×𝛼

{︃
y1 = G(x1 + 𝛼x2) + H(x2)

y2 = G(x2 + 𝛼x1) + H(x1) .

Linearity Bound

⋆ If d = deg G > deg H > 1, then and 𝛼 ̸= ±1,

fd = (x1+𝛼x2)
d + v2/v1(x2+𝛼x1)

d = 0 is smooth.

⋆ If d = degH > deg G > 1, then

fd = x1
d + v1/v2x2

d = 0 is smooth.

ℒF ≤ (max{deg G, deg H} − 1)2 · q
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Generalized Butterfly - Results

Let F = Butterfly[G,H, 𝛼] with G and H monomial functions.

0 100 200 300 400 500 600

0

0.5

1

·104

q

ℒ
F

deg G = 5, deg H = 4

deg G = 5, deg H = 3

deg G = 5, deg H = 2

deg G = 3, deg H = 5

Bound: 16 q

Low-degree functions (max{deg G, deg H} = 5 and 𝛼 = 2).
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Let F = Butterfly[G,H, 𝛼] with G and H monomial functions.
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Generalizations of Weil bound

⋆ Deligne bound

⋆ Application to the Generalized Butterfly construction

⋆ Denef and Loeser bound

⋆ Application to 3-round Feistel construction

⋆ Rojas-León bound

⋆ Application to the Generalized Flystel construction
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3-round Feistel - Definition

Let Feistel[F1,F2,F3] be a 3-round Feistel network with

d1 = deg(F1), d2 = deg(F2), and d3 = deg(F3) .

x1 x2

⊞

⊞

⊞

y1 y2

F1

F2

F3

z1
×

z2 ×

A 3-round Feistel.

{︃
y1 = x1 + F1(x2) + F3(x2 + F2(x1 + F1(x2)))

y2 = x2 + F2(x1 + F1(x2)) .

New equations with intermediate variables⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 = z1 − F1(z2)

x2 = z2

y1 = z1 + F3(z2 + F2(z1))

y2 = z2 + F2(z1) .
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Newton Polyhedron

Definition

Let f ∈ Fq[x1, . . . , xn] s.t.

f (x1, . . . , xn) =
∑︁

e1,...,en

ce1,...,en
∏︀n

i=1 x
ei
i .

The Newton polyhedron ∆(f ) of f is the convex hull defined by

{(0, . . . , 0)} U {(e1, . . . , en) | ce1,...,en ̸= 0} ⊂ Rn .

Examples:

f (x1, x2) = 1 + x1x2 − 2x1
2x2

4 + 3x1
5x2

x1

x2

x1x2

f (x1, x2) = 3− x1
2 + 5x1x2

2 + x2
4 + 9x1

5

x1

x2

x1x2
2

x1
2
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Newton Number

Definition

Let f ∈ Fq[x1, . . . , xn]. The Newton number 𝜈(f ) of f is

𝜈(f ) =
∑︁

I⊆{1,...,n}

(−1)|I |(n − |I |)!VolI∆(f ) ,

where VolI∆(f ) is the volume of ∆(f )
⋂︀

i∈I{xi = 0}

Example:

f (x1, x2) = 3−x1
2+5x1x2

2+x2
4+9x1

5

x1

x2

x2
4

x1
5

∆(f )

{x2 = 0}

{x1 = 0}

𝜈(f ) = (−1)0 · 2! ·VolΔ(f ) (I = ∅)
+ (−1)1 · 1! ·VolΔ(f )∩{x1=0} (I = {1})
+ (−1)1 · 1! ·VolΔ(f )∩{x2=0} (I = {2})
+ (−1)2 · 0! ·VolΔ(f )∩{x1=0}∩{x2=0} (I = {1, 2})
= 2× (5× 4)/2− 4− 5 + 1

= 12
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Commode functions

Definition

A function f is commode if there exist nonzero d1, d2, . . . , dn such that

(d1, 0, 0, . . . , 0), (0, d2, 0, . . . , 0), . . . , (0, 0, . . . , 0, dn) ∈ ∆(f )

Examples:

f (x1, x2) = 1 + x1x2 − 2x1
2x2

4 + 3x1
5x2

x1

x2

x1x2

x1
2x2

4

x1
5x2

∆(f )

f is not commode

f (x1, x2) = 3− x1
2 + 5x1x2

2 + x2
4 + 9x1

5

x1

x2

x2
4

x1x2
2

x1
2 x1

5

∆(f )

f is commode
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Denef-Loeser Theorem

Definition

A function f is non-degenerate if for every face 𝜏 of ∆(f ) the following system has no
nonzero solutions

𝜕f𝜏/𝜕x1 = · · · = 𝜕f𝜏/𝜕xn = 0

Theorem [Denef and Loeser, 1991]

Let f ∈ Fq[x1, . . . , xn].
If f is commode and non-degenerate with respect to its Newton polyhedron ∆(f ), then,
we have

|S(f )| =

⃒⃒⃒⃒
⃒⃒∑︁
x∈Fn

q

𝜔f (x)

⃒⃒⃒⃒
⃒⃒ ≤ 𝜈(f ) · qn/2 .

Linearity bound for n = 2: ℒF ≤ 𝜈(f ) · q.
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|S(f )| =

⃒⃒⃒⃒
⃒⃒∑︁
x∈Fn

q

𝜔f (x)

⃒⃒⃒⃒
⃒⃒ ≤ 𝜈(f ) · qn/2 .

Linearity bound for n = 2: ℒF ≤ 𝜈(f ) · q.
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3-round Feistel - Bound

Let F = Feistel[F1,F2,F3], with round functions F1, F2 (permutation) and F3. Let d1 ≥ d3.

f (z1, z2) = ⟨(v1, v2),F(z1, z2)⟩ − ⟨(u1, u2), (z1, z2)⟩
= v1F3(z2 + F2(z1)) + v2F2(z1) + u1F1(z2) + (v1 − u1)z1 + (v2 − u2)z2 .

x1 x2

⊞

⊞

⊞

y1 y2

F1

F2

F3

z1
×

z2 ×

{︃
y1 = z1 + F3(z2 + F2(z1))

y2 = z2 + F2(z1) .

Linearity Bound

⋆ f is commode

⋆ f is non-degenerate

⋆ its Newton number is

𝜈(f ) = (d2d3−1)(d1−1) . z1

z2

d2d3

d1

d3
∆(f )

ℒF ≤ (d1 − 1)(d2d3 − 1) · q
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3-round Feistel - Results

Let F = Feistel[F1,F2,F3] with F1, F2 and F3 monomial functions.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5
·104

q

ℒ
F

(d1, d2, d3) = (2, 5, 5) and F2 is a permutation

(d1, d2, d3) = (2, 5, 5) and F2 is not a permutation

(d1, d2, d3) = (4, 3, 3) and F2 is a permutation

(d1, d2, d3) = (4, 3, 3) and F2 is not a permutation

Bound: 24 q
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Generalizations of Weil bound

⋆ Deligne bound

⋆ Application to the Generalized Butterfly construction

⋆ Denef and Loeser bound

⋆ Application to 3-round Feistel construction

⋆ Rojas-León bound

⋆ Application to the Generalized Flystel construction
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Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

x1/d

Q𝛿

Open variant.{︃
y1 = x1 − Q𝛾(x2) + Q𝛿(x2 − (x1 − Q𝛾(x2))

1/d)

y2 = x2 − (x1 − Q𝛾(x2))
1/d .

x1 x2

⊟

⊞ ⊞

y1 y2

Q𝛾 xd Q𝛿

Closed variant.{︃
y1 = (x1 − x2)

d +Q𝛾(x1)

y2 = (x1 − x2)
d +Q𝛿(x2) .

Some Applications of Algebraic Geometry to Linear Cryptanalysis Clémence Bouvier 31 / 42



Motivation Delign applied to Butterflies Denef and Loeser applied to 3-round Feistel Rojas-León applied to Flystel Conclusions

Generalized Flystel - Definition

F = Flystel[H1,G,H2], with G : Fq → Fq a permutation, and H1,H2 : Fq → Fq functions.

x1 x2

⊟

⊟

⊞

y1 y2

H1

G−1

H2

Open variant.{︃
y1 = x1 − H1(x2) + H2(x2 − G−1(x1 − H1(x2)))

y2 = x2 − G−1(x1 − H1(x2)) .

x1 x2

⊟

⊞ ⊞

y1 y2

H1 G H2

Closed variant.{︃
y1 = G(x1 − x2) + H1(x1)

y2 = G(x1 − x2) + H2(x2) .
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Isolated singularities

Definition

⋆ A singular point of a hypersurface is isolated if there exists a Zariski neighborhood of
the point that contains no other singular points.

⋆ A polynomial g is quasi-homogeneous of degree 𝛿 is there exists w1, . . . ,wn s.t.

g(𝜆w1x1, . . . , 𝜆
wnxn) = 𝜆𝛿g(x1, . . . , xn) .

⋆ The Milnor number of the singularity is equal to
∏︀n

i=1(𝛿/wi − 1)

Example: Let f (x) = (x − 1)d .

⋆ x = 1 is the only singular point of f = 0.

⋆ Up to translation, we can consider the singularity in the origin: g(x) = xd .

g(𝜆wx) = (𝜆wx)d = 𝜆w ·dxd = 𝜆w ·dg(x) so that 𝛿 = w · d

⋆ Milnor number of the singularity: 𝛿/w − 1 = d − 1.
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Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let f ∈ Fq[x1, . . . , xn], s.t. deg(f ) = d .

Suppose that f = fd + fd′ + · · · , where fd , fd′ , are resp. the degree-d , degree-d ′, homo-
geneous component of f , with gcd(d , p) = gcd(d ′, p) = 1 and d ′/d > p/(p + (p − 1)2).

If the following conditions are satisfied

⋆ the hypersurface defined by fd = 0 has at worst quasi-homogeneous isolated singu-
larities of degrees prime to p with Milnor numbers 𝜇1, . . . , 𝜇s ,

⋆ the hypersurface defined by fd′ = 0 contains none of these singularities,

then we have

|S(f )| =

⃒⃒⃒⃒
⃒⃒∑︁
x∈Fn

q

𝜔f (x)

⃒⃒⃒⃒
⃒⃒ ≤

(︃
(d − 1)n − (d − d ′)

s∑︁
i=1

𝜇i

)︃
· qn/2 .

Linearity bound for n = 2: ℒF ≤ ((d − 1)2 − (d − d ′)
∑︀s

i=1 𝜇i) · q.
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Generalized Flystel - Bound

Let F = Flystel[H1,G,H2], with G a permutation, H1,H2 functions (deg G > deg H1, deg H2).

f (x1, x2) = ⟨(v1, v2),F(x1, x2)⟩ − ⟨(u1, u2), (x1, x2)⟩
= (v1 + v2) G(x1 − x2) + v1H1(x1) + v2H2(x2)− u1x1 − u2x2 .

x1 x2

⊟

⊞ ⊞

y1 y2

H1 G H2

{︃
y1 = G(x1 − x2) + H1(x1)

y2 = G(x1 − x2) + H2(x2) .

Linearity Bound

⋆ The hypersurface

fd = (v1 + v2)(x1 − x2)
d = 0

contains one singular point [1 : 1] of quasi-homogeneous type
with Milnor number d − 1.

⋆ The hypersurface

fd′ = vix
deg Hi
i = 0

does not contain this point.

ℒF ≤ (deg G− 1)(max{deg H1, deg H2} − 1) · q
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Generalized Flystel - Results

Let F = Flystel[H1,G,H2] with H1, G and H2 monomials.

0 100 200 300 400 500 600

0

1,000

2,000

3,000

4,000

5,000

q

ℒ
F

deg G = 3, max{deg H1, deg H2} = 2

Bound: 2 q

deg G = 5,max{deg H1, deg H2} = 2

Bound: 4 q

deg G = 5,max{deg H1, deg H2} = 3

Bound: 8 q

Low-degree permutations G, H1 and H2.
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Generalized Flystel - Results

Let F = Flystel[H1,G,H2] with H1, G and H2 monomials.
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q
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F

G is a permutation

G is not a permutation

Bound: 6 q

deg G = 7 and deg H1 = degH2 = 2.
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Solving conjecture

Conjecture

Let F = Flystel[H1,G,H2] be defined by H1(x) = 𝛾 + 𝛽x2, G(x) = xd and H2 = 𝛿 + 𝛽x2,
with 𝛾, 𝛿 ∈ Fp and 𝛽 ∈ F×

p . Then
ℒF ≤ p log p .

Conjecture proved for d ≤ log p

Proposition

Let F = Flystel[H1,G,H2] be defined by H1(x) = 𝛾 + 𝛽x2, G(x) = xd and H2 = 𝛿 + 𝛽x2,
with 𝛾, 𝛿 ∈ Fp and 𝛽 ∈ F×

p . Then

ℒF ≤ (d − 1)p .
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Solving conjecture
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Bound: 2 p

d = 5

Bound: 4 p
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Conclusions

⋆ Bounds on exponential sums have direct application to linear cryptanalysis

⋆ 3 different results...

⋆ Deligne, 1974
⋆ Denef and Loeser, 1991
⋆ Rojas-León, 2006

⋆ ... for 3 important constructions

⋆ Generalization of the Butterfly construction
⋆ 3-round Feistel network
⋆ Generalization of the Flystel construction

F ∈ Fq[x1, x2], ∃C ∈ Fq, ℒF ≤ C · q

⋆ Solving conjecture on the linearity of the Flystel construction

Contribute to the cryptanalysis efforts for AOP.
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Cohomological framework

S(f ) =
∑︁
x∈Fn

q

𝜒
(︀
F(x)

)︀
𝜓(−x)

⇓
Cohomological framework

⇓
|S(f )| =

⃒⃒⃒⃒
⃒
2n∑︁
i=0

(−1)i Tr
(︀
F | H i

c(An,ℒ)
)︀⃒⃒⃒⃒⃒

Sum of traces of the Frobenius automorphism on ℓ-adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

|S(f )| ≤ 𝜅

2n∑︁
i=0

dimH i
c(An,ℒ)
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⋆ Can we provide detailed calculations of the cohomological spaces to refine bounds?
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Backup

Details on the bound

⋆ Generalized Butterfly bound

⃒⃒
CF
𝜒,𝜓

⃒⃒
≤ 1

q

{︃
(deg G− 1)(deg H− 1) if 𝜒1 = 1 or 𝜒2 = 1 ,

(max{deg G, deg H} − 1)2 else .

⋆ 3-round Feistel bound

⃒⃒
CF
𝜒,𝜓

⃒⃒
≤ 1

q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(d1 − 1)(d2 − 1) if 𝜓1 ̸= 1 and 𝜒1 = 1 ,

(d3 − 1)(d2 − 1) if 𝜓1 = 1 and 𝜒1 ̸= 1 ,

(d1 − 1)(d3 − 1) if 𝜓1𝜒1 = 1 ,

(d1 − 1)(d2d3 − 1) else .

⋆ Generalized Flystel bound

⃒⃒
CF
𝜒,𝜓

⃒⃒
≤ 1

q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(deg G− 1)(deg H2 − 1) if 𝜒1 = 1 ,

(deg G− 1)(deg H1 − 1) if 𝜒2 = 1 ,

(deg H1 − 1)(deg H2 − 1) if 𝜒1𝜒2 = 1 ,

(deg G− 1)(max{deg H1, deg H2} − 1) else .
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Backup

Linear trails for a Generalized Butterfly

⊞

⊞

G

H

×𝛼

𝜓1 𝜓2𝜓1 𝜓2

1

1 1

1

1 1

1

1

⊞

⊞

G

H

×𝛼

𝜒2

𝜒2 𝜒2

𝜓2

𝜓2

𝜓1/𝜓
𝛼
2

𝜓𝛼2

(a) 𝜒1 = 1.

⊞

⊞

G

H

×𝛼

𝜓1 𝜓21 1

𝜒1

𝜒1 𝜒1

𝜓1

𝜓1 𝜓1

𝜓2/𝜓
𝛼
1

𝜓𝛼1

⊞

⊞

G

H

×𝛼

1

1 1

1

1

1

1

(b) 𝜒2 = 1.
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Backup

Linear trails for a 3-round Feistel

⊞

⊞

⊞

F1

F2

F3

𝜓1 𝜓2

𝜒2𝜓1

1 𝜒2

𝜒21

𝜓2/𝜒2𝜓1

𝜓1 𝜒2

11

(a) 𝜓1 ̸= 1 and 𝜒1 = 1.

⊞

⊞

⊞

F1

F2

F3

1 𝜓2

𝜓21

𝜒1 𝜓2

𝜒2𝜒1

11

1/𝜒1 𝜓2

𝜓2/𝜒2𝜒1

(b) 𝜓1 = 1 and 𝜒1 ̸= 1.

⊞

⊞

⊞

F1

F2

F3

𝜓1 𝜓2

1𝜓1

𝜒1 1

𝜒2𝜒1

𝜓2𝜓1

1 1

𝜒1𝜒1

(c) 𝜓1𝜒1 = 1.
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Backup

Linear trails for a Generalized Flystel

⊟

⊞ ⊞

H1 G H2

𝜓1

1

1

𝜓2

𝜓1𝜓2

𝜒2

𝜓1

1 𝜒2

𝜓1 1/𝜓1

𝜒2

𝜒21

(a) 𝜒1 = 1.

⊟

⊞ ⊞

H1 G H2

𝜓1

𝜓1𝜓2

𝜒1

𝜓2

1

1

1/𝜓2

𝜒1 1

1/𝜓2 𝜓2

𝜒1

1𝜒1

(b) 𝜒2 = 1.

⊟

⊞ ⊞

H1 G H2

𝜓1

𝜓1

𝜒1

𝜓2

𝜓2

𝜒2

1

𝜒1 𝜒2

1 1

1

𝜒2𝜒1

(c) 𝜒1𝜒2 = 1.
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Backup

Bound on exponential sums

The trace of F on H i
c(An,ℒ) is the sum of its eigenvalues 𝜆1, 𝜆2, . . ..

Tr
(︀
F | H i

c(An,ℒ) = 𝜆1 + 𝜆2 + 𝜆3 + . . .

Suppose that, ∀i , |𝜆i | ≤ 𝜅, then⃒⃒
Tr
(︀
F | H i

c(An,ℒ)
⃒⃒
≤ 𝜅 · dimH i

c(An,ℒ)

This gives an upper bound on S(f ):

|S(f )| =

⃒⃒⃒⃒
⃒
2n∑︁
i=0

(−1)i Tr
(︀
F | H i

c(An,ℒ)

⃒⃒⃒⃒
⃒

≤ 𝜅

2n∑︁
i=0

dimH i
c(An,ℒ)
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