Delign applied to Butterflie 00000000 Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel 000000000 Conclusions 000

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

(joint work with Tim Beyne)

Séminaire C2, Nancy, France January 17th, 2025

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

New symmetric primitives

Clémence Bouvier

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel 00000000 Rojas-León applied to Flystel

Conclusions 000

A new context

Traditional case

Alphabet

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4, 8$

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arithmetic.

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 32$

Denef and Loeser applied to 3-round Feistel 00000000

A new context

Traditional case

Alphabet

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4, 8$

Cryptanalysis

Decades of cryptanalysis

- ★ algebraic attacks 🗸
- \star differential attacks \checkmark
- \star linear attacks 🗸
- * ...

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arithmetic.

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 32$

Cryptanalysis

- \leq 8 years of cryptanalysis
 - \star algebraic attacks 🗸
 - \star differential attacks 🗡
 - \star linear attacks 🗡
 - * ...

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Conclusions 000

Characters

Definition

A character of a finite abelian group G is a homomorphism

 $\chi: {\mathsf{G}} \to {\mathbb{C}}^{\times}$,

where \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers.

In particular, we have

 $\chi(1)=1 \; ,$

and for $a_1, a_2 \in G$

 $\chi(a_1a_2) = \chi(a_1)\chi(a_2) .$

 $\chi(a)$ is a root of unity

Delign applied to Butterflie 00000000 Denef and Loeser applied to 3-round Feistel

Conclusions 000

Characters

Definition

A character of a finite abelian group G is a homomorphism

 $\chi: {\mathsf{G}} \to {\mathbb{C}}^{\times}$,

where \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers.

In particular, we have

 $\chi(1)=1 \; ,$

and for $a_1, a_2 \in G$

 $\chi(a_1a_2) = \chi(a_1)\chi(a_2) .$

 $\chi(a)$ is a root of unity

Definition

A linear approximation of $F : \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}^{m}$ is a pair of characters (χ, ψ) .

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Correlation of linear approximations

Definition

The correlation of the linear approximation (χ, ψ) of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is

$$C_{\chi,\psi}^{\mathsf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \psi(-x) \; .$$

Let ω be a primitive character, $\mathbb{F}_q \to \mathbb{C}^{\times}$ s.t. $\chi(\mathsf{F}(x)) = \omega^{\langle v, \mathsf{F}(x) \rangle}$ and $\psi(x) = \omega^{\langle u, x \rangle}$. Then

$$C_{\chi,\psi}^{\mathsf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \; .$$

Correlation of linear approximations

Definition

The correlation of the linear approximation (χ, ψ) of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is

$$C_{\chi,\psi}^{\mathsf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \psi(-x) \; .$$

Let ω be a primitive character, $\mathbb{F}_q \to \mathbb{C}^{\times}$ s.t. $\chi(\mathsf{F}(x)) = \omega^{\langle v, \mathsf{F}(x) \rangle}$ and $\psi(x) = \omega^{\langle u, x \rangle}$. Then

$$C_{\chi,\psi}^{\mathsf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \; .$$

Examples:

 $\star~\mbox{If}~\mbox{F}:\mathbb{F}_2^n\rightarrow\mathbb{F}_2^m,$ then

$$C_{u,v}^{\mathsf{F}} = \frac{1}{2^n} \sum_{x \in \mathbb{F}_2^n} (-1)^{(\langle v, \mathsf{F}(x) \rangle + \langle u, x \rangle)} .$$

* If $F : \mathbb{F}_p^n \to \mathbb{F}_p^m$, then

$$C_{u,v}^{\mathsf{F}} = \frac{1}{p^n} \sum_{x \in \mathbb{F}_p^n} e^{\left(\frac{2i\pi}{p}\right)(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} .$$

Clémence Bouvier

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feiste

Rojas-León applied to Flystel

Conclusions 000

Walsh transform

Definition

The Walsh transform for the character ω of the linear approximation (u, v) of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is given by

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_{a}^{n}} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}$$

$$\mathcal{W}^{\mathsf{F}}_{u,v} = q^n \cdot C^{\mathsf{F}}_{u,v}$$

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Walsh transform

Definition

The Walsh transform for the character ω of the linear approximation (u, v) of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is given by

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_{a}^{n}} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}$$

$$\mathcal{W}_{u,v}^{\mathsf{F}} = q^n \cdot C_{u,v}^{\mathsf{F}}$$

Definition

The Linearity \mathcal{L}_{F} of $\mathsf{F}: \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}^{m}$ is the highest Walsh coefficient.

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \in \mathbb{F}_q, v \neq 0} \left| \mathcal{W}_{u,v}^{\mathsf{F}} \right| \; .$$

Denef and Loeser applied to 3-round Feistel

Closed Flystel in \mathbb{F}_{2^n}

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Bounds

* Correlation bound

$$|C_{u,v}^{\mathsf{F}}| \leq 1/2^{n-1}$$

 $\star\,$ Walsh transform bound

$$|\mathcal{W}_{u,v}^{\mathsf{F}}| \leq 2^{n+1}$$

* Linearity bound

$$\mathcal{L}_{\mathsf{F}} \leq 2^{n+1}$$

Denef and Loeser applied to 3-round Feistel

Closed Flystel in \mathbb{F}_p

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Closed Flystel.

d is a small integer s.t. $x \mapsto x^d$ is a permutation of \mathbb{F}_p (usually d = 3, 5).

$$\mathcal{L}_{\mathsf{F}} = \sum_{x \in \mathbb{F}_p^2} e^{\left(rac{2i\pi}{p}
ight) (\langle \mathsf{v},\mathsf{F}(x)
angle - \langle u,x
angle)}$$

Denef and Loeser applied to 3-round Feistel

Conclusions 000

Closed Flystel in \mathbb{F}_p

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Closed Flystel.

d is a small integer s.t. $x \mapsto x^d$ is a permutation of \mathbb{F}_p (usually d = 3, 5).

$$\mathcal{L}_{\mathsf{F}} = \sum_{x \in \mathbb{F}_{p}^{2}} e^{\left(rac{2i\pi}{p}
ight) (\langle \mathsf{v},\mathsf{F}(x)
angle - \langle u,x
angle)}$$

How to determine an accurate bound for the linearity of the Closed Flystel in \mathbb{F}_{p} ?

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel 000000000 Conclusions 000

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with deg(f) = d. Then

 $\mathcal{L}_{f} \leq (d-1)\sqrt{p}$

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with deg(f) = d. Then

 $\mathcal{L}_f \leq (\mathbf{d}-1)\sqrt{p}$

$$\mathcal{L}_{\mathsf{F}} \leq (d-1) p \sqrt{p} \; ? \qquad egin{cases} \mathcal{L}_{\gamma+eta x^2} &\leq \sqrt{p} \; , \ \mathcal{L}_{x^d} &\leq (d-1) \sqrt{p} \; , \ \mathcal{L}_{\delta+eta x^2} &\leq \sqrt{p} \; . \end{cases}$$

Conjecture

$$\mathcal{L}_{\mathsf{F}} = \sum_{x \in \mathbb{F}_p^2} e^{\left(rac{2i\pi}{p}
ight)(\langle v, \mathsf{F}(x)
angle - \langle u, x
angle)} \leq p \log p$$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel 000000000 Conclusions 000

Experimental results

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Experimental results (d = 3)

Delign applied to Butterflie 00000000 Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Experimental results (d = 5)

Denef and Loeser applied to 3-round Feistel 00000000 Conclusions 000

Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

Denef and Loeser applied to 3-round Feistel

Conclusions 000

Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

* Applications of results for exponential sums (generalization of Weil bound)

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{\mathsf{x} \in \mathbb{F}_q^n} \omega^{(\langle v, \mathsf{F}(\mathsf{x}) \rangle - \langle u, \mathsf{x} \rangle)} \quad \rightarrow \quad S(f) = \sum_{\mathsf{x} \in \mathbb{F}_q^n} \omega^{f(\mathsf{x})}$$

★ \mathbb{F}_q is a finite field s.t. q is a power of a prime p.

★ Functions with 2 variables $F \in \mathbb{F}_q[x_1, x_2]$.

Generalizations of Weil bound

★ Deligne bound

\star Application to the Generalized Butterfly construction

* Denef and Loeser bound

* Application to 3-round Feistel construction

* Rojas-León bound

* Application to the Generalized Flystel construction

1

Delign applied to Butterflies

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel 000000000 Conclusions 000

Butterfly - Definition

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, $\mathbb{F}_{2^n}^2$, *n* odd.

$$\begin{cases} y_1 = (x_2 + \alpha y_2)^3 + (\beta y_2)^3 \\ y_2 = (x_1 - (\beta x_2)^3)^{1/3} - \alpha x_2 \end{cases}$$

Clémence Bouvier

Denef and Loeser applied to 3-round Feistel

Generalized Butterfly - Definition

BUTTERFLY[G, H, α], with G : $\mathbb{F}_q \to \mathbb{F}_q$ a permutation, H : $\mathbb{F}_q \to \mathbb{F}_q$ a function and $\alpha \in \mathbb{F}_q$.

Motivation
000000000000

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Smoothness

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by f = 0 is smooth, if the system

$$f = \partial f / \partial x_1 = \cdots = \partial f / \partial x_n = 0$$

has no non zero solutions.

Delign applied to Butterflies

Denef and Loeser applied to 3-round Feistel 00000000 Rojas-León applied to Flystel

Conclusions 000

Smoothness

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by f = 0 is smooth, if the system

$$f = \partial f / \partial x_1 = \cdots = \partial f / \partial x_n = 0$$

has no non zero solutions.

Examples:

* $f(x_1, x_2) = 2x_1^3 + x_2^2 = 0$ is smooth, since

 $\partial f/\partial x_1 = 6{x_1}^2$ and $\partial f/\partial x_2 = 2x_2$,

so that

$$f = \partial f / \partial x_1 = \partial f / \partial x_2 = 0 \qquad \Leftrightarrow \qquad (x_1, x_2) = (0, 0) \; .$$

Delign applied to Butterflies

Denef and Loeser applied to 3-round Feistel 00000000 Rojas-León applied to Flystel

Conclusions 000

Smoothness

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by f = 0 is smooth, if the system

$$f = \partial f / \partial x_1 = \cdots = \partial f / \partial x_n = 0$$

has no non zero solutions.

Examples:

* $f(x_1, x_2) = 2x_1^3 + x_2^2 = 0$ is smooth, since

$$\partial f/\partial x_1 = 6{x_1}^2$$
 and $\partial f/\partial x_2 = 2x_2$,

so that

$$f = \partial f / \partial x_1 = \partial f / \partial x_2 = 0 \qquad \Leftrightarrow \qquad (x_1, x_2) = (0, 0) \; .$$

* $f(x_1, x_2) = x_1^2 + x_2^2 - 2x_2 + 1 = 0$ is not smooth, since

$$\partial f/\partial x_1 = 2x_1$$
 and $\partial f/\partial x_2 = 2x_2 - 2$,

so that

$$f = \partial f / \partial x_1 = \partial f / \partial x_2 = 0 \qquad \Leftrightarrow \qquad (x_1, x_2) = (0, 1) \; .$$

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Clémence Bouvier

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Deligne Theorem

Theorem [Deligne, 1974]

Let q be a power of a prime p. Let $f \in \mathbb{F}_q[x_1, ..., x_n]$ be a polynomial of degree d, with gcd(d, p) = 1. Let f_d be the **degree** d **homogeneous component** of f, i.e.

 $f = f_d + g, \ \deg(g) < d$.

If the hypersurface defined by $f_d = 0$ is **smooth**, then, we have

$$|S(f)| = \left|\sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}\right| \leq (d-1)^n \cdot q^{n/2}.$$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Deligne Theorem

Theorem [Deligne, 1974]

Let q be a power of a prime p. Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a polynomial of degree d, with gcd(d, p) = 1. Let f_d be the **degree** d **homogeneous component** of f, i.e.

 $f = f_d + g, \ \deg(g) < d$.

If the hypersurface defined by $f_d = 0$ is **smooth**, then, we have

$$|S(f)| = \left|\sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}
ight| \leq (d-1)^n \cdot q^{n/2}.$$

Linearity bound for
$$n = 2$$
: $\mathcal{L}_{\mathsf{F}} \leq (d-1)^2 \cdot q$.

Denef and Loeser applied to 3-round Feistel

Conclusions 000

Generalized Butterfly - Bound

Let $F = BUTTERFLY[G, H, \alpha]$, with G a permutation, H a function and α in \mathbb{F}_q .

$$f(x_1, x_2) = \langle (v_1, v_2), \mathsf{F}(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle$$

= $v_1 \mathsf{G}(x_1 + \alpha x_2) + v_2 \mathsf{G}(x_2 + \alpha x_1) + v_1 \mathsf{H}(x_2) + v_2 \mathsf{H}(x_1) - u_1 x_1 - u_2 x_2 .$

Denef and Loeser applied to 3-round Feistel

Generalized Butterfly - Bound

Let $F = BUTTERFLY[G, H, \alpha]$, with G a permutation, H a function and α in \mathbb{F}_q .

$$f(x_1, x_2) = \langle (v_1, v_2), \mathsf{F}(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle$$

= $v_1 \mathsf{G}(x_1 + \alpha x_2) + v_2 \mathsf{G}(x_2 + \alpha x_1) + v_1 \mathsf{H}(x_2) + v_2 \mathsf{H}(x_1) - u_1 x_1 - u_2 x_2$

Linearity Bound

$$\star\,$$
 If $\textit{d} = \deg \mathsf{G} > \deg \mathsf{H} > 1,$ then and $\alpha \neq \pm 1,$

$$f_d = (x_1 + \alpha x_2)^d + v_2 / v_1 (x_2 + \alpha x_1)^d = 0$$
 is smooth.

* If
$$d = \deg H > \deg G > 1$$
, then

$$f_d = x_1^d + v_1/v_2 x_2^d = 0$$
 is smooth.

$$\mathcal{L}_{\mathsf{F}} \leq (\mathsf{max}\{\mathsf{deg}\,\mathsf{G},\mathsf{deg}\,\mathsf{H}\}-1)^2\cdot q$$

Clémence Bouvier

Generalized Butterfly - Results

Let $F = BUTTERFLY[G, H, \alpha]$ with G and H monomial functions.

Low-degree functions (max{deg G, deg H} = 5 and $\alpha = 2$).

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel 0000000000 Conclusions 000

Generalized Butterfly - Results

Let $F = BUTTERFLY[G, H, \alpha]$ with G and H monomial functions.

Influence of α (deg G = 5 and deg H = 2).

Generalizations of Weil bound

* Deligne bound

 \star Application to the Generalized Butterfly construction

- ***** Denef and Loeser bound
 - \star Application to 3-round Feistel construction
- * Rojas-León bound

* Application to the Generalized Flystel construction

Denef and Loeser applied to 3-round Feistel 0000000

Rojas-León applied to Flystel

Conclusions 000

3-round Feistel - Definition

Let $\operatorname{Feistel}[F_1, F_2, F_3]$ be a 3-round Feistel network with

$$\textit{d}_1 = \mathsf{deg}(\mathsf{F}_1), \textit{d}_2 = \mathsf{deg}(\mathsf{F}_2), \text{ and } \textit{d}_3 = \mathsf{deg}(\mathsf{F}_3)$$
 .

$$\begin{cases} y_1 = x_1 + F_1(x_2) + F_3(x_2 + F_2(x_1 + F_1(x_2))) \\ y_2 = x_2 + F_2(x_1 + F_1(x_2)) . \end{cases}$$

A 3-round Feistel.

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

3-round Feistel - Definition

Let $FEISTEL[F_1, F_2, F_3]$ be a 3-round Feistel network with

$$d_1 = \deg(\mathsf{F}_1), d_2 = \deg(\mathsf{F}_2), \text{ and } d_3 = \deg(\mathsf{F}_3)$$
.

A 3-round Feistel.

$$\begin{cases} y_1 = x_1 + F_1(x_2) + F_3(x_2 + F_2(x_1 + F_1(x_2))) \\ y_2 = x_2 + F_2(x_1 + F_1(x_2)) . \end{cases}$$

New equations with intermediate variables

$$\begin{cases} x_1 = z_1 - F_1(z_2) \\ x_2 = z_2 \\ y_1 = z_1 + F_3(z_2 + F_2(z_1)) \\ y_2 = z_2 + F_2(z_1) . \end{cases}$$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Newton Polyhedron

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ s.t.

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \sum_{e_1,\ldots,e_n} c_{e_1,\ldots,e_n} \prod_{i=1}^n \mathbf{x}_i^{e_i} \ .$$

The **Newton polyhedron** $\Delta(f)$ of *f* is the convex hull defined by

 $\{(0,\ldots,0)\} \ U \ \{(e_1,\ldots,e_n) \ | \ c_{e_1,\ldots,e_n} \neq 0\} \subset \mathbb{R}^n \ .$
Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Newton Polyhedron

Definition

Let
$$f \in \mathbb{F}_q[x_1, \ldots, x_n]$$
 s.t.

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \sum_{e_1,\ldots,e_n} c_{e_1,\ldots,e_n} \prod_{i=1}^n \mathbf{x}_i^{e_i} \ .$$

The **Newton polyhedron** $\Delta(f)$ of *f* is the convex hull defined by

$$\{(0,\ldots,0)\} \ \cup \ \{(e_1,\ldots,e_n) \ | \ c_{e_1,\ldots,e_n} \neq 0\} \subset \mathbb{R}^n \ .$$

Examples:

$$f(x_1, x_2) = 1 + x_1 x_2 - 2x_1^2 x_2^4 + 3x_1^5 x_2$$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Newton Polyhedron

Definition

Let
$$f \in \mathbb{F}_q[x_1, \ldots, x_n]$$
 s.t.

$$f(x_1,\ldots,x_n)=\sum_{e_1,\ldots,e_n}c_{e_1,\ldots,e_n}\prod_{i=1}^n x_i^{e_i}.$$

The **Newton polyhedron** $\Delta(f)$ of *f* is the convex hull defined by

$$\{(0,\ldots,0)\} \ \cup \ \{(e_1,\ldots,e_n) \ | \ c_{e_1,\ldots,e_n} \neq 0\} \subset \mathbb{R}^n \ .$$

Examples:

$$f(x_1, x_2) = 1 + x_1 x_2 - 2x_1^2 x_2^4 + 3x_1^5 x_2$$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Newton Polyhedron

Definition

Let
$$f \in \mathbb{F}_q[x_1, \ldots, x_n]$$
 s.t.

$$f(x_1,\ldots,x_n) = \sum_{e_1,\ldots,e_n} c_{e_1,\ldots,e_n} \prod_{i=1}^n x_i^{e_i} .$$

The **Newton polyhedron** $\Delta(f)$ of *f* is the convex hull defined by

$$\{(0,\ldots,0)\}$$
 U $\{(e_1,\ldots,e_n) \mid c_{e_1,\ldots,e_n} \neq 0\} \subset \mathbb{R}^n$.

Examples:

$$f(x_1, x_2) = 1 + x_1 x_2 - 2x_1^2 x_2^4 + 3x_1^5 x_2$$

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Clémence Bouvier

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Newton Polyhedron

Definition

Let
$$f \in \mathbb{F}_q[x_1, \ldots, x_n]$$
 s.t.

$$f(x_1,\ldots,x_n) = \sum_{e_1,\ldots,e_n} c_{e_1,\ldots,e_n} \prod_{i=1}^n x_i^{e_i} .$$

The **Newton polyhedron** $\Delta(f)$ of *f* is the convex hull defined by

$$\{(0,\ldots,0)\}$$
 U $\{(e_1,\ldots,e_n) \mid c_{e_1,\ldots,e_n} \neq 0\} \subset \mathbb{R}^n$.

Examples:

$$f(x_1, x_2) = 1 + x_1 x_2 - 2x_1^2 x_2^4 + 3x_1^5 x_2$$

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Clémence Bouvier

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Newton Number

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$. The Newton number $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I} \{x_{i}=0\}$

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Newton Number

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$. The Newton number $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I} \{x_{i}=0\}$

Example:

 $f(x_1, x_2) = 3 - x_1^2 + 5x_1 x_2^2 + x_2^4 + 9x_1^5$

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Newton Number

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$. The Newton number $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I} \{x_{i}=0\}$

Example:

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1 x_2^2 + x_2^4 + 9x_1^5 \qquad \nu(f) = (-1)^0 \cdot 2! \cdot \operatorname{Vol}_{\Delta(f)} \qquad (I = \emptyset)$$

$$= 2 \times (5 \times 4)/2$$

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Newton Number

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$. The Newton number $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I} \{x_{i}=0\}$

Example:

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1 x_2^2 + x_2^4 + 9x_1^5 \qquad \nu(f) = (-1)^0 \cdot 2! \cdot \operatorname{Vol}_{\Delta(f)} \qquad (I = \emptyset) \\ + (-1)^1 \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_1 = 0\}} \qquad (I = \{1\})$$

$$= 2 \times (5 \times 4)/2 - 4$$

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Clémence Bouvier

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Newton Number

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$. The Newton number $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I} \{x_i=0\}$

Example:

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1 x_2^2 + x_2^4 + 9x_1^5 \qquad \nu(f) = (-1)^0 \cdot 2! \cdot \operatorname{Vol}_{\Delta(f)} \qquad (I = \emptyset)$$

$$+ (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{1}=0\}} \qquad (I = \{1\})^{1}$$

$$+ (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{2}=0\}}$$
 $(I = \{2\})$

$$= 2 \times (5 \times 4)/2 - 4 - 5$$

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Newton Number

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$. The Newton number $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I} \{x_{i}=0\}$

Example:

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1 x_2^2 + x_2^4 + 9x_1^5 \qquad \nu(f) = (-1)^0 \cdot 2! \cdot \operatorname{Vol}_{\Delta(f)} \qquad (I = \emptyset) \\ + (-1)^1 \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_1 = 0\}} \qquad (I = \{1\})$$

$$+ (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{2}=0\}} \qquad (I = \{2\})$$

$$+ (-1)^2 \cdot 0! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_1=0\} \cap \{x_2=0\}} \quad (I = \{1, 2\}) \\= 2 \times (5 \times 4)/2 - 4 - 5 + 1$$

Delign applied to Butterflie

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Newton Number

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$. The Newton number $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I} \{x_{i}=0\}$

Example:

$$f(x_{1}, x_{2}) = 3 - x_{1}^{2} + 5x_{1}x_{2}^{2} + x_{2}^{4} + 9x_{1}^{5} \qquad \nu(f) = (-1)^{0} \cdot 2! \cdot \operatorname{Vol}_{\Delta(f)} \qquad (I = \emptyset) \\ + (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{1}=0\}} \qquad (I = \{1\}) \\ + (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{2}=0\}} \qquad (I = \{2\}) \\ + (-1)^{2} \cdot 0! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{1}=0\} \cap \{x_{2}=0\}} \qquad (I = \{1, 2\}) \\ = 2 \times (5 \times 4)/2 - 4 - 5 + 1 \\ = 12$$

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Commode functions

Definition

A function f is **commode** if there exist nonzero d_1, d_2, \ldots, d_n such that

 $(d_1, 0, 0, \ldots, 0), (0, d_2, 0, \ldots, 0), \ldots, (0, 0, \ldots, 0, d_n) \in \Delta(f)$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Commode functions

Definition

A function f is **commode** if there exist nonzero d_1, d_2, \ldots, d_n such that

 $(d_1, 0, 0, \ldots, 0), (0, d_2, 0, \ldots, 0), \ldots, (0, 0, \ldots, 0, d_n) \in \Delta(f)$

Examples:

$$f(x_1, x_2) = 1 + x_1 x_2 - 2 x_1^2 x_2^4 + 3 x_1^5 x_2$$

f is not commode

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Commode functions

Definition

A function f is **commode** if there exist nonzero d_1, d_2, \ldots, d_n such that

$$(d_1, 0, 0, \ldots, 0), (0, d_2, 0, \ldots, 0), \ldots, (0, 0, \ldots, 0, d_n) \in \Delta(f)$$

Examples:

$$f(x_1, x_2) = 1 + x_1 x_2 - 2x_1^2 x_2^4 + 3x_1^5 x_2^4$$

f is not commode

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Denef-Loeser Theorem

Definition

A function f is **non-degenerate** if for every face τ of $\Delta(f)$ the following system has no nonzero solutions

 $\partial f_{\tau}/\partial x_1 = \cdots = \partial f_{\tau}/\partial x_n = 0$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Denef-Loeser Theorem

Definition

A function f is **non-degenerate** if for every face τ of $\Delta(f)$ the following system has no nonzero solutions

$$\partial f_{\tau} / \partial \mathbf{x}_{1} = \cdots = \partial f_{\tau} / \partial \mathbf{x}_{n} = \mathbf{0}$$

Theorem [Denef and Loeser, 1991]

Let $f \in \mathbb{F}_q[x_1, ..., x_n]$. If f is commode and non-degenerate with respect to its Newton polyhedron $\Delta(f)$, then, we have

$$|S(f)| = \left|\sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}\right| \leq \nu(f) \cdot q^{n/2}.$$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Denef-Loeser Theorem

Definition

A function f is **non-degenerate** if for every face τ of $\Delta(f)$ the following system has no nonzero solutions

$$\partial f_{\tau} / \partial x_1 = \cdots = \partial f_{\tau} / \partial x_n = 0$$

Theorem [Denef and Loeser, 1991]

Let $f \in \mathbb{F}_q[x_1, ..., x_n]$. If f is commode and non-degenerate with respect to its Newton polyhedron $\Delta(f)$, then, we have

$$|S(f)| = \left|\sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}\right| \leq \nu(f) \cdot q^{n/2}.$$

Linearity bound for
$$n = 2$$
: $\mathcal{L}_{\mathsf{F}} \leq \nu(f) \cdot q$.

Denef and Loeser applied to 3-round Feistel

3-round Feistel - Bound

Let $F = \text{FEISTEL}[F_1, F_2, F_3]$, with round functions F_1 , F_2 (permutation) and F_3 . Let $d_1 \ge d_3$.

$$\begin{aligned} f(z_1, z_2) &= \langle (v_1, v_2), \mathsf{F}(z_1, z_2) \rangle - \langle (u_1, u_2), (z_1, z_2) \rangle \\ &= v_1 \mathsf{F}_3(z_2 + \mathsf{F}_2(z_1)) + v_2 \mathsf{F}_2(z_1) + u_1 \mathsf{F}_1(z_2) + (v_1 - u_1)z_1 + (v_2 - u_2)z_2 \ . \end{aligned}$$

Denef and Loeser applied to 3-round Feistel

3-round Feistel - Bound

Let $F = \text{FEISTEL}[F_1, F_2, F_3]$, with round functions F_1 , F_2 (permutation) and F_3 . Let $d_1 \ge d_3$.

$$\begin{aligned} f(z_1, z_2) &= \langle (v_1, v_2), \mathsf{F}(z_1, z_2) \rangle - \langle (u_1, u_2), (z_1, z_2) \rangle \\ &= v_1 \mathsf{F}_3(z_2 + \mathsf{F}_2(z_1)) + v_2 \mathsf{F}_2(z_1) + u_1 \mathsf{F}_1(z_2) + (v_1 - u_1)z_1 + (v_2 - u_2)z_2 \ . \end{aligned}$$

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Clémence Bouvier

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel 0000000000 Conclusions 000

3-round Feistel - Results

Let $F = FEISTEL[F_1, F_2, F_3]$ with F_1 , F_2 and F_3 monomial functions.

Generalizations of Weil bound

* Deligne bound

 \star Application to the Generalized Butterfly construction

- * Denef and Loeser bound
 - * Application to 3-round Feistel construction
- * Rojas-León bound
 - \star Application to the Generalized Flystel construction

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Closed variant.

$$\begin{cases} y_1 = (x_1 - x_2)^d + Q_{\gamma}(x_1) \\ y_2 = (x_1 - x_2)^d + Q_{\delta}(x_2). \end{cases}$$

Denef and Loeser applied to 3-round Feistel

Generalized Flystel - Definition

 $\mathsf{F} = \mathrm{FLYSTEL}[\mathsf{H}_1,\mathsf{G},\mathsf{H}_2]$, with $\mathsf{G}:\mathbb{F}_q \to \mathbb{F}_q$ a permutation, and $\mathsf{H}_1,\mathsf{H}_2:\mathbb{F}_q \to \mathbb{F}_q$ functions.

Denef and Loeser applied to 3-round Feistel

Isolated singularities

Definition

- * A singular point of a hypersurface is **isolated** if there exists a Zariski neighborhood of the point that contains no other singular points.
- * A polynomial g is quasi-homogeneous of degree δ is there exists w_1, \ldots, w_n s.t.

$$g(\lambda^{w_1}x_1,\ldots,\lambda^{w_n}x_n)=\lambda^{\delta}g(x_1,\ldots,x_n)$$
.

* The Milnor number of the singularity is equal to $\prod_{i=1}^{n} (\delta/w_i - 1)$

Denef and Loeser applied to 3-round Feistel

Isolated singularities

Definition

- * A singular point of a hypersurface is **isolated** if there exists a Zariski neighborhood of the point that contains no other singular points.
- * A polynomial g is quasi-homogeneous of degree δ is there exists w_1, \ldots, w_n s.t.

$$g(\lambda^{w_1}x_1,\ldots,\lambda^{w_n}x_n)=\lambda^{\delta}g(x_1,\ldots,x_n)$$
.

* The Milnor number of the singularity is equal to $\prod_{i=1}^{n} (\delta/w_i - 1)$

Example: Let $f(x) = (x-1)^d$.

- * x = 1 is the only singular point of f = 0.
- * Up to translation, we can consider the singularity in the origin: $g(x) = x^d$.

$$g(\lambda^w x) = (\lambda^w x)^d = \lambda^{w \cdot d} x^d = \lambda^{w \cdot d} g(x) \qquad \text{so that } \delta = w \cdot d$$

* Milnor number of the singularity: $\delta/w - 1 = d - 1$.

Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let
$$f \in \mathbb{F}_q[\mathbf{x}_1, \ldots, \mathbf{x}_n]$$
, s.t. deg $(f) = \mathbf{d}$.

Suppose that $f = f_d + f_{d'} + \cdots$, where f_d , $f_{d'}$, are resp. the degree-*d*, degree-*d'*, homogeneous component of *f*, with gcd(d, p) = gcd(d', p) = 1 and $d'/d > p/(p + (p - 1)^2)$.

If the following conditions are satisfied

* the hypersurface defined by $f_d = 0$ has at worst quasi-homogeneous isolated singularities of degrees prime to p with Milnor numbers μ_1, \ldots, μ_s ,

 \star the hypersurface defined by $f_{d'} = 0$ contains none of these singularities,

then we have

$$|S(f)| = \left|\sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}\right| \leq \left((d-1)^n - (d-d') \sum_{i=1}^s \mu_i \right) \cdot q^{n/2} .$$

Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let
$$f \in \mathbb{F}_q[\mathbf{x}_1, \ldots, \mathbf{x}_n]$$
, s.t. deg $(f) = \mathbf{d}$.

Suppose that $f = f_d + f_{d'} + \cdots$, where f_d , $f_{d'}$, are resp. the degree-*d*, degree-*d'*, homogeneous component of *f*, with gcd(d, p) = gcd(d', p) = 1 and $d'/d > p/(p + (p - 1)^2)$.

If the following conditions are satisfied

* the hypersurface defined by $f_d = 0$ has at worst quasi-homogeneous isolated singularities of degrees prime to p with Milnor numbers μ_1, \ldots, μ_s ,

 \star the hypersurface defined by $f_{d'} = 0$ contains none of these singularities,

then we have

$$|S(f)| = \left|\sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}\right| \leq \left((d-1)^n - (d-d') \sum_{i=1}^s \mu_i \right) \cdot q^{n/2} .$$

Linearity bound for n = 2: $\mathcal{L}_{\mathsf{F}} \leq ((d-1)^2 - (d-d')\sum_{i=1}^{s} \mu_i) \cdot q$.

Denef and Loeser applied to 3-round Feistel

Conclusions 000

Generalized Flystel - Bound

Let $F = FLYSTEL[H_1, G, H_2]$, with G a permutation, H_1, H_2 functions (deg $G > deg H_1, deg H_2$).

$$f(\mathbf{x}_1, \mathbf{x}_2) = \langle (v_1, v_2), \mathsf{F}(\mathbf{x}_1, \mathbf{x}_2) \rangle - \langle (u_1, u_2), (\mathbf{x}_1, \mathbf{x}_2) \rangle \\ = (v_1 + v_2) \mathsf{G}(\mathbf{x}_1 - \mathbf{x}_2) + v_1 \mathsf{H}_1(\mathbf{x}_1) + v_2 \mathsf{H}_2(\mathbf{x}_2) - u_1 \mathbf{x}_1 - u_2 \mathbf{x}_2 .$$

Denef and Loeser applied to 3-round Feistel

Generalized Flystel - Bound

Let $F = FLYSTEL[H_1, G, H_2]$, with G a permutation, H_1, H_2 functions (deg $G > deg H_1, deg H_2$).

$$f(x_1, x_2) = \langle (v_1, v_2), \mathsf{F}(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle \\ = (v_1 + v_2) \mathsf{G}(x_1 - x_2) + v_1 \mathsf{H}_1(x_1) + v_2 \mathsf{H}_2(x_2) - u_1 x_1 - u_2 x_2 .$$

Linearity Bound

* The hypersurface

$$f_d = (v_1 + v_2)(x_1 - x_2)^d = 0$$

contains one singular point [1:1] of quasi-homogeneous type with Milnor number d - 1.

* The hypersurface

$$f_{d'} = v_i x_i^{\deg H_i} = 0$$

does not contain this point.

$$\mathcal{L}_{\mathsf{F}} \leq (\mathsf{deg}\, \mathsf{G}-1)(\mathsf{max}\{\mathsf{deg}\, \mathsf{H}_1,\mathsf{deg}\, \mathsf{H}_2\}-1)\cdot q$$

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Generalized Flystel - Results

Let $F = FLYSTEL[H_1, G, H_2]$ with H_1 , G and H_2 monomials.

Low-degree permutations G, H_1 and H_2 .

Denef and Loeser applied to 3-round Feistel

Generalized Flystel - Results

Let $F = FLYSTEL[H_1, G, H_2]$ with H_1 , G and H_2 monomials.

$$\deg \mathsf{G} = 7$$
 and $\deg \mathsf{H}_1 = \deg \mathsf{H}_2 = 2$.

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Solving conjecture

Conjecture

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then $\mathcal{L}_F \leq p \log p$.

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Solving conjecture

Conjecture

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then $\mathcal{L}_F .$

Conjecture proved for $d \leq \log p$

Proposition

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then

$$\mathcal{L}_\mathsf{F} \leq (\emph{d} - 1) p$$
 .

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions 000

Solving conjecture

Denef and Loeser applied to 3-round Feistel 00000000

Conclusions

\star Bounds on exponential sums have direct application to linear cryptanalysis

Conclusions

- \star Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results...
 - * Deligne, 1974
 - $\star\,$ Denef and Loeser, 1991
 - * Rojas-León, 2006
Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results...
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - * Rojas-León, 2006
- \star ... for 3 important constructions
 - $\star\,$ Generalization of the Butterfly construction
 - * 3-round Feistel network
 - * Generalization of the Flystel construction

$$\mathsf{F} \in \mathbb{F}_q[\mathbf{x}_1, \mathbf{x}_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C \cdot q$$

Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results...
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - * Rojas-León, 2006
- \star ... for 3 important constructions
 - $\star\,$ Generalization of the Butterfly construction
 - * 3-round Feistel network
 - \star Generalization of the Flystel construction

* Solving conjecture on the linearity of the Flystel construction

Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- \star 3 different results...
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - * Rojas-León, 2006
- \star ... for 3 important constructions
 - $\star\,$ Generalization of the Butterfly construction
 - * 3-round Feistel network
 - \star Generalization of the Flystel construction

 \star Solving conjecture on the linearity of the Flystel construction

Contribute to the cryptanalysis efforts for AOP.

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Motivation 000000000000 Delign applied to Butterflie 00000000 Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Cohomological framework

$$\mathcal{S}(f) = \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \psi(-x)$$

Some Applications of Algebraic Geometry to Linear Cryptanalysis

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Cohomological framework

Sum of traces of the Frobenius automorphism on ℓ -adic cohomology groups.

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Cohomological framework

Sum of traces of the Frobenius automorphism on ℓ -adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

Denef and Loeser applied to 3-round Feistel

Rojas-León applied to Flystel

Conclusions

Cohomological framework

Sum of traces of the Frobenius automorphism on ℓ -adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H^i_c(\mathbb{A}^n, \mathcal{L})$$

Clémence Bouvier

Motivation 000000000000000 Delign applied to Butterflie

Denef and Loeser applied to 3-round Feiste

Rojas-León applied to Flystel

Conclusions

Perspectives

 $\star\,$ Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H^i_c(\mathbb{A}^n, \mathcal{L})$$

0000	Delign applied to Butterflies 00000000	Denef and Loeser applied to 3-round Feistel	Rojas-León applied to Flystel 0000000000	Conclusions

Perspectives

* Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

* Can we generalize to other constructions?

stap-zoo.com

And propose a general framework for arithmetization-oriented primitives?

00000	Delign applied to Butterflies 00000000	Denef and Loeser applied to 3-round Feistel	Rojas-León applied to Flystel 0000000000

Perspectives

 $\star\,$ Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H^i_c(\mathbb{A}^n, \mathcal{L})$$

* Can we generalize to other constructions?

stap-zoo.com

And propose a general framework for arithmetization-oriented primitives?

Conclusions

Details on the bound

 \star Generalized Butterfly bound

$$\begin{split} \big| C^{\mathsf{F}}_{\chi,\psi} \big| &\leq \frac{1}{q} \begin{cases} (\deg \mathsf{G} - 1)(\deg \mathsf{H} - 1) & \text{if } \chi_1 = 1 \text{ or } \chi_2 = 1 \,, \\ (\max\{\deg \mathsf{G}, \deg \mathsf{H}\} - 1)^2 & \text{else} \,. \end{cases} \end{split}$$

 \star 3-round Feistel bound

Backup

$$|C_{\chi,\psi}^{\mathsf{F}}| \leq \frac{1}{q} \begin{cases} (d_1 - 1)(d_2 - 1) & \text{if } \psi_1 \neq 1 \text{ and } \chi_1 = 1 \,, \\ (d_3 - 1)(d_2 - 1) & \text{if } \psi_1 = 1 \text{ and } \chi_1 \neq 1 \,, \\ (d_1 - 1)(d_3 - 1) & \text{if } \psi_1 \chi_1 = 1 \,, \\ (d_1 - 1)(d_2 d_3 - 1) & \text{else} \,. \end{cases}$$

★ Generalized Flystel bound

$$|C_{\chi,\psi}^{\mathsf{F}}| \leq \frac{1}{q} \begin{cases} (\deg \mathsf{G} - 1)(\deg \mathsf{H}_2 - 1) & \text{if } \chi_1 = 1, \\ (\deg \mathsf{G} - 1)(\deg \mathsf{H}_1 - 1) & \text{if } \chi_2 = 1, \\ (\deg \mathsf{H}_1 - 1)(\deg \mathsf{H}_2 - 1) & \text{if } \chi_1 \chi_2 = 1, \\ (\deg \mathsf{G} - 1)(\max\{\deg \mathsf{H}_1, \deg \mathsf{H}_2\} - 1) & \text{else.} \end{cases}$$

Backup 00000

Linear trails for a Generalized Butterfly

(a) $\chi_1 = 1$.

Backup 00000

Linear trails for a 3-round Feistel

Clémence Bouvier

Backup 00000

Linear trails for a Generalized Flystel

Clémence Bouvier

Bound on exponential sums

The trace of F on $H^i_c(\mathbb{A}^n,\mathcal{L})$ is the sum of its eigenvalues $\lambda_1,\lambda_2,\ldots$

$$\operatorname{Tr}(F \mid H_c^i(\mathbb{A}^n, \mathcal{L}) = \lambda_1 + \lambda_2 + \lambda_3 + \dots$$

Suppose that, $\forall i, |\lambda_i| \leq \kappa$, then

$$\left|\operatorname{Tr}(F \mid H^{i}_{c}(\mathbb{A}^{n}, \mathcal{L})\right| \leq \kappa \cdot \dim H^{i}_{c}(\mathbb{A}^{n}, \mathcal{L})$$

This gives an upper bound on S(f):

$$S(f)| = \left| \sum_{i=0}^{2n} (-1)^i \operatorname{Tr}(F \mid H_c^i(\mathbb{A}^n, \mathcal{L})) \right|$$
$$\leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$