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Open variant. Closed variant.
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Outline

From the original Butterfly construction in F3,...

Preliminaries

and definitions

. to new challenges in prime fields.

Context

and recents results
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Differential Uniformity

Differential uniformity

Let F : Fon — Fon be a function, then

6F = max |{X 5 ]F2n, F(X+ a) + F(X) = b}|
a#0,b
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Linearity Bounds
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Differential Uniformity
Differential uniformity
Let F : Fon — Fon be a function, then
0 = max |[{x € Fan, F(x + a) + F(x) = b}|
a#0,b
Examples:
* IfFF: x> x*"72, then
4 if nis even
oF = o
2 if nis odd
* IfF:x— x2k+1, then
oF=2.
4/39

Butterfly Constructions: From binary to prime fields. Clémence Bouvier



Original Construction Challenges in Fpp Linearity Bounds
00@00000 000000000000 000 000000000000 000

Differential Uniformity

Differential uniformity

Let F : Fon — Fon be a function, then

6k = max |{x € Far, F(x + a) + F(x) = b}|
a#0,b

Examples:
* IfFF: x> x*"72, then

4 if nis even
OF = o .
2 if nis odd

k
% If F:x+— x>*1 then

APN (Almost Perfect Non-linear) functions
A function F is APN if for all a = 0 and b, we have §r < 2.
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Linearity

Linearity

Let F : Fon — Fon be a function, then

WrE = max Z(—l)”'X+V'F(X)

Correlation

The maximum correlation for a linear approximation (u, v) is

G = 27" W
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Linearity

Linearity

Let F : Fon — Fon be a function, then

WrE = max Z(—l)”'X+V'F(X)

Correlation

The maximum correlation for a linear approximation (u, v) is

G = 27" W

Examples:
* If F: x+— Lx + ¢, then
Wr=2" and G =1.

1

* If F: x— x7", with n even, then

We =221 and G =271,

Butterfly Constructions: From binary to prime fields. Clémence Bouvier
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CCZ-equivalence

Inversion

e ={(x,F(x)),x €Fan} and 1= {(y, F’l(y)) Y € an}
Noting that

Fe={(F '(y),y) ,y €Fan} ,

0 1
rF:<1 0>rF1.

then, we have:
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CCZ-equivalence

Inversion

e ={(x,F(x)),x €Fan} and 1= {(y, B 1(y)) Y € an}
Noting that

Fe={(F '(y),y) ,y €Fan} ,

0 1
rF:<1 0>FF1.

Definition [Carlet, Charpin and Zinoviev, 1998]

then, we have:

F:Fo — Fon and G : Fon — Fyn are CCZ-equivalent if

e = L(T'cg)+c, where L is linear.

Butterfly Constructions: From binary to prime fields. Clémence Bouvier
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Advantages of CCZ-equivalence

If F:Fz — Fon and G : Fon — Fon are CCZ-equivalent. Then
* Differential properties are the same: §p = d¢ .

Differential uniformity

o0 = n;g)ﬁ{x € Fan, F(x + a) + F(x) = b}

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 7/39
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Advantages of CCZ-equivalence

If F:Fz — Fon and G : Fon — Fon are CCZ-equivalent. Then
* Differential properties are the same: §p = d¢ .

Differential uniformity

O = n;g)ﬁ{x € Fan, F(x + a) + F(x) = b}|
* Linear properties are the same: Wr = W .
Linearity

_ u-x—+v-F(x)
We = e 20D
x€Fyn

Butterfly Constructions: From binary to prime fields. Clémence Bouvier
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Original Construction
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Butterfly - Definition

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, F3,, n odd.

Open variant.

o o=0e+ )+ (By)?
2 =(a- (5X2)3)1/3 —axp.

Butterfly Constructions: From binary to prime fields.

X1 X2

Y2

Closed variant.

i = (x1+ax)®+ (Bx)?
o =0+ ax1)3 + (ﬁxl)3 .

Clémence Bouvier

/39
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Take-away

* Butterfly introduced over binary fields

* Structure of APN permutations on an even number of bits
* 2 variants of the construction: Open and Closed

* An example of CCZ-equivalent functions

* Same differential and linear properties for the 2 variants

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 9/39
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Outline

From the original Butterfly in F3,...

Preliminaries

and definitions

... to new challenges in prime fields.

Context

and recents results
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New symmetric primitives

FHE

ZK

| | | | | | | | | | | | | | | I\
T T T T T T T T T T T T T T T ’

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
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A new context

Traditional case Arithmetization-Oriented
Alphabet Alphabet
Operations based on logical gates or CPU Operations based on large finite-field arith-
instructions. metic.
F7, with n ~ 4,8 Fq, with g € {2", p}, p~ 2", n> 32
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A new context

Traditional case Arithmetization-Oriented
Alphabet Alphabet
Operations based on logical gates or CPU Operations based on large finite-field arith-
instructions. metic.
F7, with n ~ 4,8 Fq, with g € {2", p}, p~ 2", n> 32

Cryptanalysis Cryptanalysis
Decades of cryptanalysis < 8 years of cryptanalysis

* algebraic attacks v/ * algebraic attacks v/

* differential attacks v * differential attacks X

* linear attacks v/ * linear attacks X

%% oo % ooo

Butterfly Constructions: From binary to prime fields. Clémence Bouvier
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The Flystel in Anemoi

Linearity Bounds

000000000000 000

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023]

| Butterfly + Feistel = Flystel |

@y Fqg — Fgand Qs : Fy — [F, two quadratic functions, and £ : [,

High-Degree
permutation

X1 X2
= Q, )

J} Xl/d =]
i Qs L

L
yi y2

Open Flystel H.

Butterfly Constructions: From binary to prime fields.

Low-Degree
function

Clémence Bouvier

[o]

- Ty, x — x? a permutation

a EQS
N 2

Closed Flystel V.
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The Flystel in Anemoi

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023]

| Butterfly + Feistel = Flystel |

Q, :F, —TF,and Qs : F, — F, two quadratic functions, and £ : ', — 7, x — x? a permutation

x1 X X1 X2
- =

& L

High-Degree Low-Degree

permutation | s & function E)a EQS
B Qs L
1 y2 » ¥

Open Flystel H. Closed Flystel V.

M =L(Mv) st ((x1,%),(y1,¥2)) = L ((y2, ), (x1,¥1)) )

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 13/39
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How to adapt definitions
Differential uniformity

In binary fields
0 = max |[{x € Fan, F(x + a) + F(x) = b}|
a#0,b
In prime fields

O = max [{x € F,, F(x+2) = F(x) = b}|

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 14 /39



Challenges in
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How to adapt definitions
Differential uniformity
In binary fields
G = Je (1pe @ ey e 2} 6 = ]
In prime fields
0 = ggﬁ{x € Fp,F(x + a) — F(x) = b}|
Linearity

In binary fields

_ _ 1\u-x+v-F(x)
We = max > (-1)
x€EFon

Butterfly Constructions: From binary to prime fields. Clémence Bouvier
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Characters

Definition
A character of a finite abelian group G is a homomorphism

x:G—C*,

where C* is the multiplicative group of nonzero complex numbers.

In particular, we have
X(l) =1,
and for a;,a, € G
x(a122) = x(a1)x(a2) -

x(a) is a root of unity

Butterfly Constructions: From binary to prime fields. Clémence Bouvier

Linearity Bound
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Challenges in F Linearity Bounds
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Characters

Definition
A character of a finite abelian group G is a homomorphism
x:G—C*,

where C* is the multiplicative group of nonzero complex numbers.

In particular, we have
X(l) =1,
and for a;,a, € G
x(a122) = x(a1)x(a2) -

x(a) is a root of unity

Definition

A linear approximation of F : F] — F7" is a pair of characters (x, ).

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 15/39
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Correlation of linear approximations

Definition
The correlation of the linear approximation (x, ) of F: Fy — F' is
1
CFx,w =5 Z X(F(X)) Y(—x) .

q x€Fy

Let w be a primitive element, F, — C* s.t. x(F(x)) = w{F) and 4(x) = w*). Then

1 v X))—u,x
= = 3 wltFeN=(x)

q x€lFy

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 16 /39
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Correlation of linear approximations

Definition
The correlation of the linear approximation (x, ) of F: Fy — F' is
1
CFx,w =5 Z X(F(X)) Y(—x) .

q x€Fy

Let w be a primitive element, F; — C* s.t. x(F(x)) = w{"F&) and (x) = wx),

Xﬂll Z w (v,F(x))—(u,x)) )

x€lFy
Examples:

* If F:F; — F7, then

P = 2 3 (1))
u,v on .

x€FY

7726 27 (VPO —(ux))

xeFy

* If F:Fy, — F,, then

Butterfly Constructions: From binary to prime fields. Clémence Bouvier
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Walsh transform

Definition
The Walsh transform for the character w of the linear approximation (u, v) of F: Fg — F

is given by
W, = Z WUV FGN =(ux))

x€Fy

Foo_ F
Wu,v_qn'CU,V

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 17 /39
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Walsh transform

Definition

The Walsh transform for the character w of the linear approximation (u, v) of F: Fg — F

is given by
WFU v — Z (_&v(<V’F(X)>_<u3x>) .
XE]Fg
WFu,v — qn X CFu,v
Definition

The Linearity Lr of F : F{ — 7 is the highest Walsh coefficient.

_ F
L:F B u,vg]}??f/géo |W u,v| '

Butterfly Constructions: From binary to prime fields. Clémence Bouvier
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Closed Flystel in [Fyn

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Degenerate case of Butterfly

X1 X2
n 2

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 18 /39
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Closed Flystel in [Fyn

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Degenerate case of Butterfly If 5 # 0, then [Li et al., 2018] stated that
Differential uniformity
X1 X2
O = max [{x € Fon, F(x+a) + F(x) = b}|
Bound:
o < 4
5A ] BB
Linearity
EF = max Z (71)(<V7F(X)>+<“7X>)
u,v#£0 xe]an
n 2
Bound:
ACF S 2n+1

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 18/39
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Closed Flystel in F),

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x ++ x4 a perm. (usually d = 3,5) Differential uniformity

G = max o € 5 F(x-+ 2) = F(x) = b}

X1 X2
Bound:
= op<d-1
Solving an open problem
+ Bx? ‘ d ’ ‘54— X2
[’y ’ J * . Finding APN permutations over IF,%.
N Y2

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 19/39
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Closed Flystel in F),

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x ++ x4 a perm. (usually d = 3,5) Differential uniformity

6 = max {x € B F(x-+2) ~ F(x) = b}

X1 X2
Bound:
5 p<d-1
Solving an open problem
) ] o
‘7 o x o Finding APN permutations over IF,Z;.
Lr = max Z (75 )V FG) = ()
u,v#£0
Y1 y2 x€F2

How to determine an accurate bound for the linearity of the Closed Flystel in IF,,?

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 19/39
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Weil bound

Proposition [Weil, 1948]

Let f € F,[x] be a univariate polynomial with deg(f) = d. Then

Le<(d=1)p

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 20/39
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Weil bound

Proposition [Weil, 1948]

Let f € F,[x] be a univariate polynomial with deg(f) = d. Then

Lr<(d—-1)y/p

X1 X2
- L Bx2 S \/ﬁ )
I Lr <(d=1)pyp?
Lsige < .
‘,Y+BX2 ‘ x4 ‘ ‘6+ﬁx2 o+ — \/ﬁ
q & Conjecture
; b Le=> eCF)WFON=(x) < plog p
XE]F%

Closed Flystel.

Butterfly Constructions: From binary to prime fields. Clémence Bouvier
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500

Butterfly Constructions: From binary to prime fields.

< 1,000 |-

Challenges in

Linearity Bounds

00000000000 e000 000000000000 000
Experimental results
3 g g: A d=3
B :'. ...". ------ Weil Bound: 2 p3/2
L - v d=5
B ..." ------ Weil Bound: 4 p*/2
B 5 < d=7 R
) I Weil Bound: 6 p*/2
p d=11
------ Weil Bound: 10 p*/2 ]
= = = Conjecture: plogp

--"-—’;'“P “" z”
ar ¢ A A A A A A

\
100
p

Clémence Bouvier

| |
120 140 160
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Experimental results (d = 3)

T I
4,000 I A d=3 N
L
===== Weil Bound: 2p3/2 ,"
»
= = = Conjecture: plogp ',*'
37000 |~ | = == Refine Conjecture: 2 p P N
.: "f‘
- "
.. “
. 2,000 | |
B R "
0l L d
.. "
- ”
K - - N
1,000 |- : IS i
:' ‘4’ - m_ w“‘ 1"‘
B - Y s
R e = g aaeA
.0. '—“‘“‘ ﬂ"l m
0 S |
| | |

| | | |
0 100 200 300 400 500 600
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Experimental results (d = 5)
4000 T % .- —
seee Weil Bound: 4 p*/2 ,."'
= = = Conjecture: plogp ¢"
35000 | | = == Refine conjecture: 3.5 p '¢" N
& 2,000 ; ]
.: ¢" .—“w‘w‘ vv
. e’ _i_\_v'vv
1,000 |- ‘,/ \-~—W";' vy .
et W
R0 A
0 ,,,—w“"" |
| | | | | | |
0 100 200 300 400 500 600
P
Clémence Bouvier
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Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 24/39
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Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

* Applications of results for exponential sums (generalization of Weil bound)

Wl'iv = Z SUGFC) = (ux)) S(f) = Z L)

x€Fy x€Fy

* g is a finite field s.t. g is a power of a prime p.

* Functions with 2 variables F € F[x1, x2].

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 24/39
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Generalizations of Weil bound

[Beyne and Bouvier, 2024]

* Deligne bound

* Application to the Generalized Butterfly construction

% Denef and Loeser bound

* Application to 3-round Feistel construction

* Rojas-Ledn bound

* Application to the Generalized Flystel construction

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 25/39
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Smoothness

Definition
Let f € Fy[xi,...,xs]. A hypersurface defined by f = 0 is smooth, if the system
f=0f/0xg=---=0f/0x, =0

has no non zero solutions.

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 26/39
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Smoothness

Definition

Let f € Fy[xi,...,xs]. A hypersurface defined by f = 0 is smooth, if the system
f=0f/0xg=---=0f/0x, =0

has no non zero solutions.

Examples:

* f(xi,x) = 2x1° + x> = 0 is smooth, since

6f/8X1 = 6X12 and 8f/8X2 = 2X2 s
so that

fzaf/axlzaf/aXQZO = (X1,X2):(0,0) .

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 26/39



al Construction Linearity Bounds

0O@0000000000000

Smoothness

Definition

Let f € Fy[xi,...,xs]. A hypersurface defined by f = 0 is smooth, if the system
f=0f/0xg=---=0f/0x, =0

has no non zero solutions.

Examples:

* f(xi,x) = 2x1° + x> = 0 is smooth, since

Of Joxi = 6x:> and  Of /Ox» = 2%,
so that

F=0f/0x=0F /0o =0 &  (x1,%)=(0,0).

* f(x1,x) = x12 4+ %% — 2x + 1 = 0 is not smooth, since

(9f/8X1 = 2X1 and 8f/6X2 = 2X2 -2 s
so that

fzaf/axlzaf/8X2:0 ~ (Xl,Xg):(O,l) .

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 26/39
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Deligne Theorem

Theorem [Deligne, 1974]

Let g be a power of a prime p.
Let f € Fy[xi,...,x,] be a polynomial of degree d, with gcd(d, p) = 1.
Let 7y be the degree d homogeneous component of f, i.e.

f="r1+g, deg(g) < d.
If the hypersurface defined by f; = 0 is smooth, then, we have

IS(H)l =D ™| < (d—1)"-¢2.

x€Fy

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 27/39
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Deligne Theorem

Theorem [Deligne, 1974]

Let g be a power of a prime p.
Let f € Fy[xi,...,x,] be a polynomial of degree d, with gcd(d, p) = 1.
Let 7y be the degree d homogeneous component of f, i.e.

f="r1+g, deg(g) < d.

If the hypersurface defined by f; = 0 is smooth, then, we have

IS(H)l =D ™| < (d—1)"-¢2.

x€Fy

Linearity bound for n =2: Lg < (d —1)?- q.

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 27/39
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Butterfly - Definition

00000000

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, F3,, n odd.

Open variant.

o o=0e+ )+ (By)?
2 =(a- (5X2)3)1/3 —axp.

Butterfly Constructions: From binary to prime fields.

X1 X2

Y2

Closed variant.

i = (x1+ax)®+ (Bx)?
o =0+ ax1)3 + (ﬁxl)3 .

Clémence Bouvier
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Generalized Butterfly - Definition

BUTTERFLY[G, H, o], with G : F, — F, a permutation, H : F, — [, a function and o € F,,.

X X
1 2 X1 X2

Y2
Open variant. Closed variant.
vy = G(X2+(1y2)+H(y2) i = G(X1+aX2)+H(X2)
vy = G—l(X1 — H(x)) — axe . y2 =G(x 4+ ax))+ H(x).

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 29/39
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Generalized Butterfly - Bound

Let F = BUTTERFLY[G, H, ], with G a permutation, H a function and « in F,,.

fxa,x2) = (v, v2), F(x1, x2)) — ((u1, w), (x1, x2))
V1G(X1 + O[XQ) + V2G(X2 + OéXl) + V1H(X2) + V2H(X1) — Ui Xy — UxXp .

yi = G(x1 + ax2) + H(x2)
y2 = G(x + axi) + H(x1).

30/39
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Generalized Butterfly - Bound

Let F = BUTTERFLY[G, H, ], with G a permutation, H a function and « in F,,.

fxa,x2) = (v, v2), F(x1, x2)) — ((u1, w), (x1, x2))
V1G(X1 + OZXQ) + V2G(X2 + O{Xl) + V1H(X2) + VQH(Xl) — Ui Xy — UxXp .

Linearity Bound
* If d =degG > degH > 1, then and o # +1,

* If d =degH > deg G > 1, then

fy = x° + vi/wx? = 0 is smooth.

Lr < (max{deg G,degH} — 1)? - g

yi = G(x1 + ax2) + H(x2)
y» =G+ axt)+H(x).

Butterfly Constructions: From binary to prime fields. Clémence Bouvier

fa=(xa+ axz)d +vo/vi(0+ axl)d = 0 is smooth.

00000e000000000
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Generalized Butterfly - Results

Let F = BUTTERFLY[G, H, @] with G and H monomial functions.

-10%
1{{ A degG=5,degH=4 . ]
<« degG=5,degH =3 L
v degG=5,degH =2 Lo’
» degG=3,degH =5 ’,_—‘ vvv
=== Bound: 16 g “-" v w .
.
v
& 051 M AP S “S—

| | | | | |
0 100 200 300 400 500 600
q

Low-degree functions (max{deg G,degH} =5 and oo = 2).
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Generalized Butterfly - Results

Let F = BUTTERFLY[G, H, @] with G and H monomial functions.

104
- I
1 Loa=2
~« a=3
v a=5
r a=(q-1)/2
=== Bound: 16 ¢
& 05
0
| | | | | | |
0 100 200 300 400 500 600
q
Influence of o (deg G =5 and degH = 2).
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Linearity Bounds

00000000 e000000
Flystel - Definition
Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].
X1 X2 X1 X2
= Q, 0
K —— 5 { Q, } { x4 { Qs }
B Qs & 8
n Y2 » Y2
Open variant. Closed variant.
_ d
o= x = Q) + Qsle — (a = Q; (e))Y9) no=0a =)+ Q)
2 =x2—(x1— Qv(Xz))l/d- y2 = (xa—x)? +Qs(x).
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Generalized Flystel - Definition

F = FLYSTEL[H}, G, H,], with G : F, — [, a permutation, and Hq, H, : F, — F, functions.

X1 X2 X1 X2

’_
U
g
firy
R
L

()
L.
Mk
LLr
T
E
)
T
5

i Ha & =
y1 Y2 71 Y2
Open variant. Closed variant.
Y1 =Xx1— Hl(Xz) + H2(X2 — G_I(Xl — H1(X2))) yi = G(Xl - XQ) + Hl(xl)
Yo =X —G_l(X1 - Hl(XQ)). Y2 :G(Xl _X2)+H2(X2)'

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 34/39



Challenges in T,

Original Construction
000000000000 000

00000000

Generalized Flystel - Results

Let F = FLYSTEL[H1, G, H,] with Hy, G and H, monomials.

Linearity Bounds

0000000000 e0000

Le < (deg G — 1)(max{degHy,degH,} — 1) - g

¢ degG =3, max{degH;,degH>} =2 oo
= == Bound: 2 g “.-""
4a000 [| v degG =5 max{degH;,degH,} =2 “_.-" A A
----- Bound: 4 g poet A
RT VS
A degG =5, max{degHi,deg Ho} =3 X gert 4
L A LT Bound: 8 ¢ st A ad .
Q@ T it
2,000 |- el at dwmney
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Solving conjecture
Proposition
Let F = FLYSTEL[Hy, G, H,] be defined by Hi(x) = v + 8x%, G(x) = x? and H, = § + x?,
with 7,0 € F, and 8 € F;. Then
Le<(d—-1)p
4,000 - - --‘ Conjecture: ;)Iogp ‘,-‘
A d=3 et
= == Bound: 2 p ‘__"‘
v d=5 PPE e S R -
g 2,000 |- |- - - Bound: 4 p ',." ________ e
_——"‘ _l_,—v';"v‘—l ww vV
_\_\ gy ‘; ;_*_ :L ak ““"‘“- aoas
i"'v;...m- WS
0 B ﬂi “ | | | |
0 100 200 300 400 500 600

Butterfly Constructions: From binary to prime fields.

p

Clémence Bouvier

36/39



Original Construction Challenges in F Linearity Bounds
00000000 000000000000 000 0000000000000

Conclusions

* Butterfly construction found interest over prime fields
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Conclusions

* Butterfly construction found interest over prime fields
* Solving the open problem of finding APN permutations over ]F,z,

* Bounds on exponential sums have direct application to linear cryptanalysis
* Deligne, 1974

* Denef and Loeser, 1991
* Rojas-Ledn, 2006

Generalization of the Butterfly construction
3-round Feistel network
Generalization of the Flystel construction

FelF,[x,x]|, 3CeF,, Le<Cxgq
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Conclusions

* Butterfly construction found interest over prime fields
* Solving the open problem of finding APN permutations over ]F,z,

* Bounds on exponential sums have direct application to linear cryptanalysis

* Deligne, 1974 Generalization of the Butterfly construction
* Denef and Loeser, 1991 3-round Feistel network
* Rojas-Ledn, 2006 Generalization of the Flystel construction

FelF,[x,x]|, 3CeF,, Le<Cxgq

* Solving conjecture on the linearity of the Flystel construction in Anemoi
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Conclusions

* Butterfly construction found interest over prime fields
* Solving the open problem of finding APN permutations over ]F,z,

* Bounds on exponential sums have direct application to linear cryptanalysis

* Deligne, 1974 Generalization of the Butterfly construction
* Denef and Loeser, 1991 3-round Feistel network
* Rojas-Ledn, 2006 Generalization of the Flystel construction

Fe Fq[XLXQ], iC € Fq, Le<(Cxgq

* Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.
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Cohomological framework

S(F) =Y x(F(x)) $(-x)

x€Fy
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Cohomological framework

Cohomological framework

4
IS =[S (-1 Tr(F | Hi(A". )

i=0

Sum of traces of the Frobenius automorphism on ¢-adic cohomology groups.
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Cohomological framework

4
IS =[S (-1 Tr(F | Hi(A". )

i=0

Sum of traces of the Frobenius automorphism on ¢-adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 38/39



Original Construction Challenges in F Linearity Bounds
00000000 000000000000 000 0000000000000 e0

Cohomological framework

Cohomological framework

4
IS =[S (-1 Tr(F | Hi(A". )

i=0

Sum of traces of the Frobenius automorphism on ¢-adic cohomology groups.
Sum of traces of a linear map on a vector space of finite dimension.

2n
IS(A) < kY dim HI(A". L)
i=0

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 38/39



Original Construction Challenges in Fp Linearity Bounds
00000000 000000000000 000 0000000000000 0e

Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

2n
IS(FI < kY _dim HI(A", L)

i=0

(on-going work with Christophe Levrat)
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Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

2n
IS(FI < kY _dim HI(A", L)
i=0
(on-going work with Christophe Levrat)
Closed Butterfly (q = 11) Closed Butterfly (g = 13)
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Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

2n
IS(FI < kY _dim HI(A", L)
i=0
(on-going work with Christophe Levrat)
Open Butterfly (q = 11) Open Butterfly (g = 13)
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Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

2n
IS(FI < kY _dim HI(A", L)
i=0
(on-going work with Christophe Levrat)
Open Flystel (g =11) Open Flystel (q = 13)
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Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

2n
IS(FI < kY _dim HI(A", L)
i=0
(on-going work with Christophe Levrat)
Open Flystel (g =11) Open Flystel (q = 13)

Thank you
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