

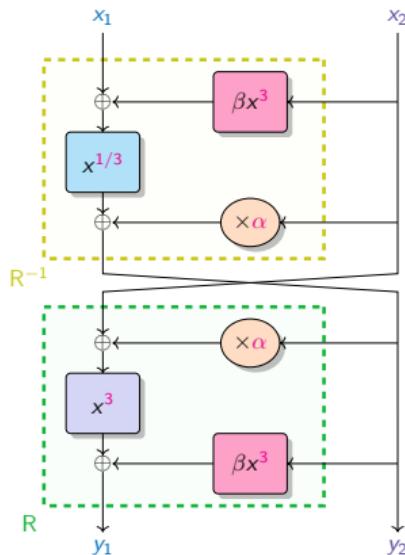
Butterfly Constructions: From Boolean Foundations to Remaining Challenges over Prime Fields.

Clémence Bouvier

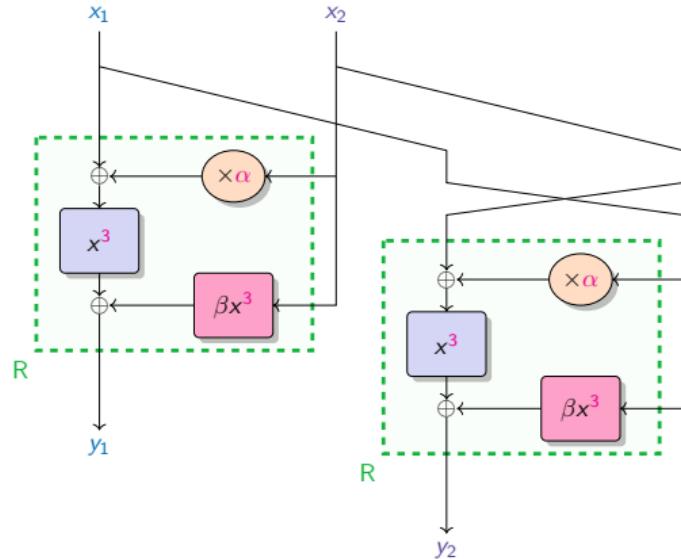
Université de Lorraine, CNRS, Inria, LORIA

Cryptis Seminar, Limoges, France
January 13th, 2026

Butterfly

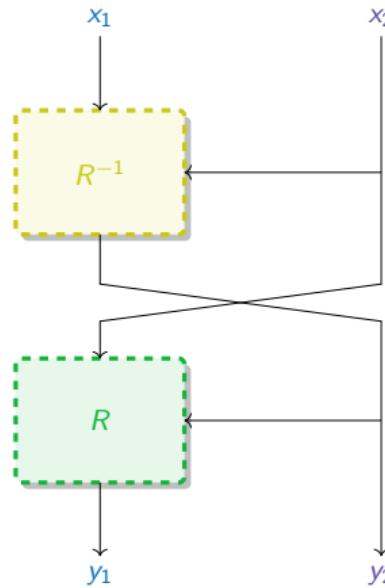
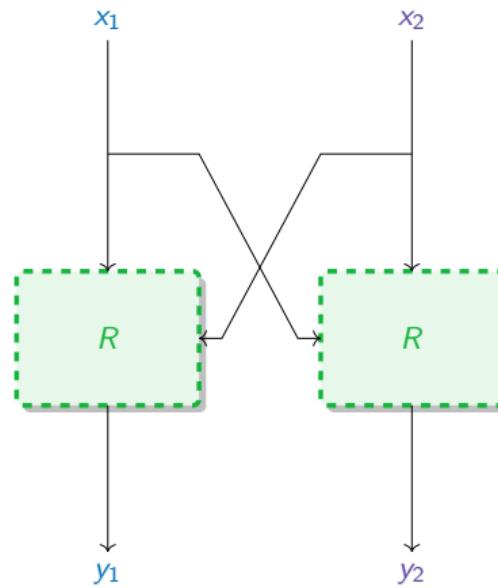


Open variant.



Closed variant.

Butterfly

*Open variant.**Closed variant.*

Outline

From the original Butterfly construction in $\mathbb{F}_{2^n}^2$...

Preliminaries
and definitions

... to new challenges in prime fields.

Context
and recent results

Differential Uniformity

Differential uniformity

Let $\mathbf{F} : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ be a function, then

$$\delta_{\mathbf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{2^n}, \mathbf{F}(x + a) + \mathbf{F}(x) = b\}|$$

Differential Uniformity

Differential uniformity

Let $\mathbf{F} : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ be a function, then

$$\delta_{\mathbf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{2^n}, \mathbf{F}(x + a) + \mathbf{F}(x) = b\}|$$

Examples:

- ★ If $\mathbf{F} : x \mapsto x^{2^n-2}$, then

$$\delta_{\mathbf{F}} = \begin{cases} 4 & \text{if } n \text{ is even} \\ 2 & \text{if } n \text{ is odd} \end{cases} .$$

- ★ If $\mathbf{F} : x \mapsto x^{2^k+1}$, then

$$\delta_{\mathbf{F}} = 2 .$$

Differential Uniformity

Differential uniformity

Let $\mathbf{F} : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ be a function, then

$$\delta_{\mathbf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{2^n}, \mathbf{F}(x + a) + \mathbf{F}(x) = b\}|$$

Examples:

- ★ If $\mathbf{F} : x \mapsto x^{2^n-2}$, then

$$\delta_{\mathbf{F}} = \begin{cases} 4 & \text{if } n \text{ is even} \\ 2 & \text{if } n \text{ is odd} \end{cases} .$$

- ★ If $\mathbf{F} : x \mapsto x^{2^k+1}$, then

$$\delta_{\mathbf{F}} = 2 .$$

APN (Almost Perfect Non-linear) functions

A function \mathbf{F} is APN if for all $a \neq 0$ and b , we have $\delta_{\mathbf{F}} \leq 2$.

Linearity

Linearity

Let $F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ be a function, then

$$\mathcal{W}_F = \max_{\substack{u, v \neq 0}} \left| \sum_{x \in \mathbb{F}_{2^n}} (-1)^{u \cdot x + v \cdot F(x)} \right|$$

Correlation

The maximum correlation for a linear approximation (u, v) is

$$C_F = 2^{-n} \cdot \mathcal{W}_F$$

Linearity

Linearity

Let $F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ be a function, then

$$\mathcal{W}_F = \max_{\substack{u, v \neq 0}} \left| \sum_{x \in \mathbb{F}_{2^n}} (-1)^{u \cdot x + v \cdot F(x)} \right|$$

Correlation

The maximum correlation for a linear approximation (u, v) is

$$C_F = 2^{-n} \cdot \mathcal{W}_F$$

Examples:

- ★ If $F : x \mapsto Lx + c$, then

$$\mathcal{W}_F = 2^n \quad \text{and} \quad C_F = 1.$$

- ★ If $F : x \mapsto x^{-1}$, with n even, then

$$\mathcal{W}_F = 2^{n/2+1} \quad \text{and} \quad C_F = 2^{-n/2+1}.$$

CCZ-equivalence

Inversion

$$\Gamma_F = \{(x, F(x)) \mid x \in \mathbb{F}_{2^n}\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)) \mid y \in \mathbb{F}_{2^n}\}$$

Noting that

$$\Gamma_F = \{(F^{-1}(y), y) \mid y \in \mathbb{F}_{2^n}\} ,$$

then, we have:

$$\Gamma_F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{F^{-1}} .$$

CCZ-equivalence

Inversion

$$\Gamma_F = \{(x, F(x)) \mid x \in \mathbb{F}_{2^n}\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)) \mid y \in \mathbb{F}_{2^n}\}$$

Noting that

$$\Gamma_F = \{(F^{-1}(y), y) \mid y \in \mathbb{F}_{2^n}\} ,$$

then, we have:

$$\Gamma_F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{F^{-1}} .$$

Definition [Carlet, Charpin and Zinoviev, 1998]

$F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ and $G : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ are **CCZ-equivalent** if

$$\Gamma_F = \mathcal{L}(\Gamma_G) + c , \quad \text{where } \mathcal{L} \text{ is linear.}$$

Advantages of CCZ-equivalence

If $\mathbf{F} : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ and $\mathbf{G} : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ are **CCZ-equivalent**. Then

- ★ **Differential** properties are the same: $\delta_{\mathbf{F}} = \delta_{\mathbf{G}}$.

Differential uniformity

$$\delta_{\mathbf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{2^n}, \mathbf{F}(x + a) + \mathbf{F}(x) = b\}|$$

Advantages of CCZ-equivalence

If $\mathbf{F} : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ and $\mathbf{G} : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ are **CCZ-equivalent**. Then

- ★ **Differential** properties are the same: $\delta_{\mathbf{F}} = \delta_{\mathbf{G}}$.

Differential uniformity

$$\delta_{\mathbf{F}} = \max_{\mathbf{a} \neq 0, \mathbf{b}} |\{x \in \mathbb{F}_{2^n}, \mathbf{F}(x + \mathbf{a}) + \mathbf{F}(x) = \mathbf{b}\}|$$

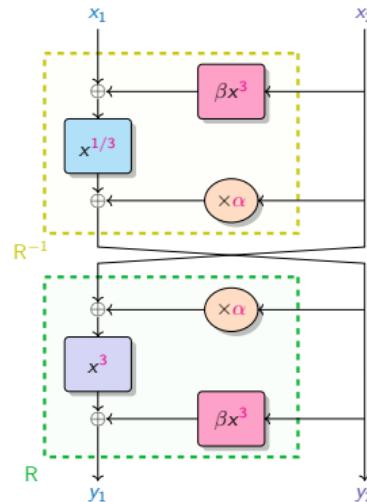
- ★ **Linear** properties are the same: $\mathcal{W}_{\mathbf{F}} = \mathcal{W}_{\mathbf{G}}$.

Linearity

$$\mathcal{W}_{\mathbf{F}} = \max_{\mathbf{u}, \mathbf{v} \neq 0} \left| \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\mathbf{u} \cdot \mathbf{x} + \mathbf{v} \cdot \mathbf{F}(x)} \right|$$

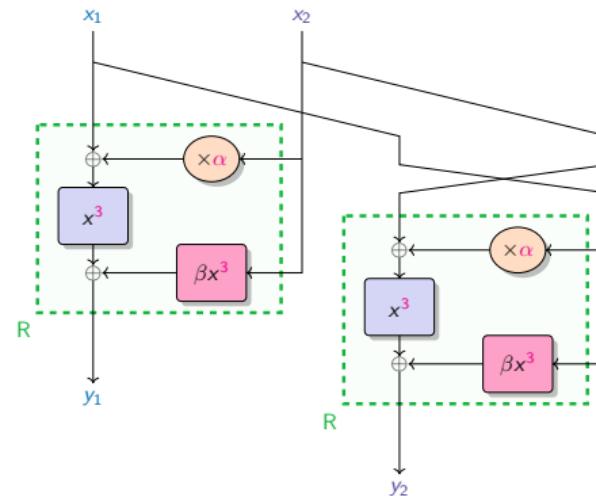
Butterfly - Definition

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, \mathbb{F}_{2^n} , n odd.



Open variant.

$$\begin{cases} y_1 = (x_2 + \alpha y_2)^3 + (\beta y_2)^3 \\ y_2 = (x_1 - (\beta x_2)^3)^{1/3} - \alpha x_2. \end{cases}$$



Closed variant.

$$\begin{cases} y_1 = (x_1 + \alpha x_2)^3 + (\beta x_2)^3 \\ y_2 = (x_2 + \alpha x_1)^3 + (\beta x_1)^3. \end{cases}$$

Take-away

- ★ Butterfly introduced over binary fields
- ★ Structure of APN permutations on an even number of bits
- ★ 2 variants of the construction: Open and Closed
- ★ An example of CCZ-equivalent functions
- ★ Same differential and linear properties for the 2 variants

Outline

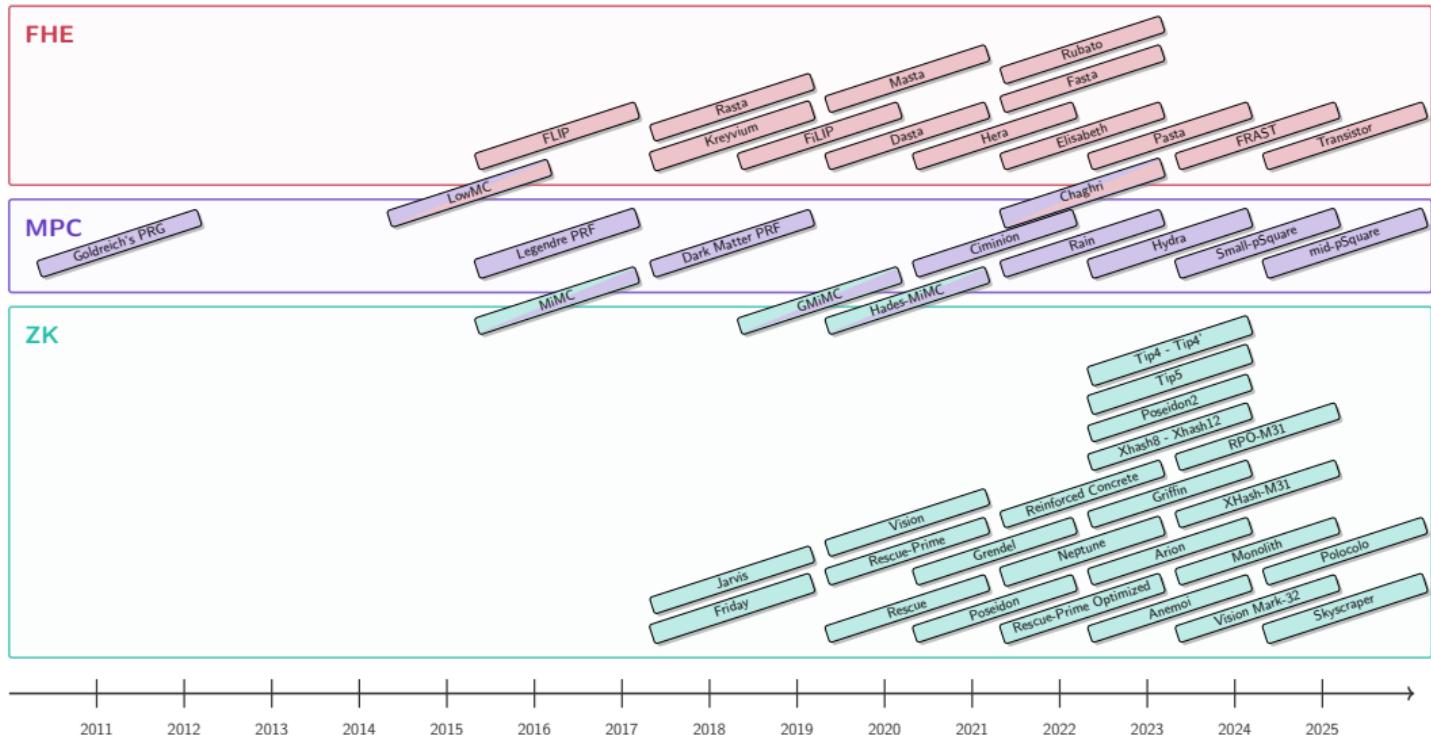
From the original Butterfly in $\mathbb{F}_{2^n}^2$...

Preliminaries
and definitions

... to new challenges in prime fields.

Context
and recent results

New symmetric primitives



A new context

Traditional case

Alphabet

Operations based on logical gates or CPU instructions.

\mathbb{F}_2^n , with $n \simeq 4, 8$

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arithmetic.

\mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 32$

A new context

Traditional case

Alphabet

Operations based on logical gates or CPU instructions.

\mathbb{F}_2^n , with $n \simeq 4, 8$

Cryptanalysis

Decades of cryptanalysis

- ★ algebraic attacks ✓
- ★ differential attacks ✓
- ★ linear attacks ✓
- ★ ...

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arithmetic.

\mathbb{F}_q , with $q \in \{2^n, p\}$, $p \simeq 2^n$, $n \geq 32$

Cryptanalysis

≤ 8 years of cryptanalysis

- ★ algebraic attacks ✓
- ★ differential attacks ✗
- ★ linear attacks ✗
- ★ ...

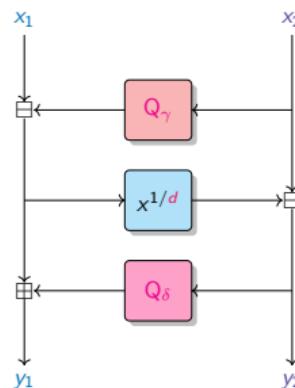
The Flystel in Anemoi

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023]

Butterfly + Feistel \Rightarrow Flystel

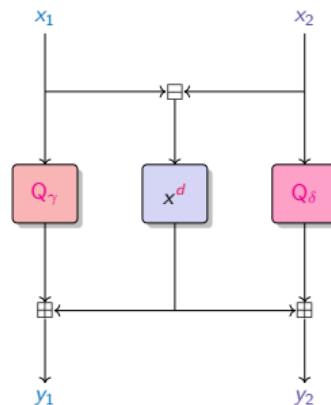
$Q_\gamma : \mathbb{F}_q \rightarrow \mathbb{F}_q$ and $Q_\delta : \mathbb{F}_q \rightarrow \mathbb{F}_q$ two quadratic functions, and $E : \mathbb{F}_q \rightarrow \mathbb{F}_q, x \mapsto x^d$ a permutation

High-Degree
permutation



Open Flystel \mathcal{H} .

Low-Degree
function



Closed Flystel \mathcal{V} .

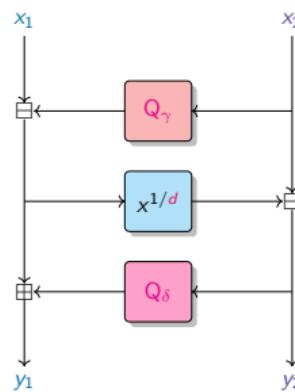
The Flystel in Anemoi

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023]

Butterfly + Feistel \Rightarrow Flystel

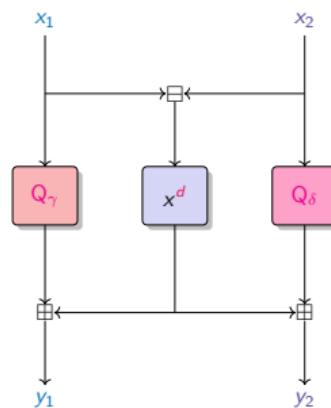
$Q_\gamma : \mathbb{F}_q \rightarrow \mathbb{F}_q$ and $Q_\delta : \mathbb{F}_q \rightarrow \mathbb{F}_q$ two quadratic functions, and $E : \mathbb{F}_q \rightarrow \mathbb{F}_q, x \mapsto x^d$ a permutation

High-Degree
permutation



Open Flystel \mathcal{H} .

Low-Degree
function



Closed Flystel \mathcal{V} .

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}}) \quad \text{s.t.} \quad ((x_1, x_2), (y_1, y_2)) = \mathcal{L}((y_2, x_2), (x_1, y_1))$$

How to adapt definitions

Differential uniformity

In binary fields

$$\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{2^n}, F(x+a) + F(x) = b\}|$$

In prime fields

$$\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p, F(x+a) - F(x) = b\}|$$

How to adapt definitions

Differential uniformity

In binary fields

$$\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{2^n}, F(x+a) + F(x) = b\}|$$

In prime fields

$$\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p, F(x+a) - F(x) = b\}|$$

Linearity

In binary fields

$$\mathcal{W}_F = \max_{u, v \neq 0} \left| \sum_{x \in \mathbb{F}_{2^n}} (-1)^{u \cdot x + v \cdot F(x)} \right|$$

Characters

Definition

A **character** of a finite abelian group G is a homomorphism

$$\chi : G \rightarrow \mathbb{C}^{\times} ,$$

where \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers.

In particular, we have

$$\chi(1) = 1 ,$$

and for $a_1, a_2 \in G$

$$\chi(a_1 a_2) = \chi(a_1) \chi(a_2) .$$

$\boxed{\chi(a) \text{ is a root of unity}}$

Characters

Definition

A **character** of a finite abelian group G is a homomorphism

$$\chi : G \rightarrow \mathbb{C}^\times ,$$

where \mathbb{C}^\times is the multiplicative group of nonzero complex numbers.

In particular, we have

$$\chi(1) = 1 ,$$

and for $a_1, a_2 \in G$

$$\chi(a_1 a_2) = \chi(a_1) \chi(a_2) .$$

$\chi(a)$ is a root of unity

Definition

A **linear approximation** of $F : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$ is a pair of characters (χ, ψ) .

Correlation of linear approximations

Definition

The **correlation of the linear approximation** (χ, ψ) of $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$ is

$$C_{\chi, \psi}^{\mathbf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \chi(\mathbf{F}(x)) \psi(-x) .$$

Let ω be a primitive element, $\mathbb{F}_q \rightarrow \mathbb{C}^\times$ s.t. $\chi(\mathbf{F}(x)) = \omega^{\langle v, \mathbf{F}(x) \rangle}$ and $\psi(x) = \omega^{\langle u, x \rangle}$. Then

$$C_{\chi, \psi}^{\mathbf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \omega^{\langle \langle v, \mathbf{F}(x) \rangle - \langle u, x \rangle \rangle} .$$

Correlation of linear approximations

Definition

The **correlation of the linear approximation** (χ, ψ) of $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$ is

$$C_{\chi, \psi}^{\mathbf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \chi(\mathbf{F}(x)) \psi(-x) .$$

Let ω be a primitive element, $\mathbb{F}_q \rightarrow \mathbb{C}^\times$ s.t. $\chi(\mathbf{F}(x)) = \omega^{\langle v, \mathbf{F}(x) \rangle}$ and $\psi(x) = \omega^{\langle u, x \rangle}$. Then

$$C_{\chi, \psi}^{\mathbf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \omega^{\langle \langle v, \mathbf{F}(x) \rangle - \langle u, x \rangle \rangle} .$$

Examples:

- ★ If $\mathbf{F} : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^m$, then

$$C_{u, v}^{\mathbf{F}} = \frac{1}{2^n} \sum_{x \in \mathbb{F}_2^n} (-1)^{\langle \langle v, \mathbf{F}(x) \rangle + \langle u, x \rangle \rangle} .$$

- ★ If $\mathbf{F} : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^m$, then

$$C_{u, v}^{\mathbf{F}} = \frac{1}{p^n} \sum_{x \in \mathbb{F}_p^n} e^{\left(\frac{2i\pi}{p}\right) \langle \langle v, \mathbf{F}(x) \rangle - \langle u, x \rangle \rangle} .$$

Walsh transform

Definition

The **Walsh transform** for the character ω of the linear approximation (u, v) of $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$ is given by

$$\mathcal{W}^{\mathbf{F}}_{u,v} = \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle v, \mathbf{F}(x) \rangle - \langle u, x \rangle)}.$$

$$\mathcal{W}^{\mathbf{F}}_{u,v} = q^n \cdot C^{\mathbf{F}}_{u,v}$$

Walsh transform

Definition

The **Walsh transform** for the character ω of the linear approximation (u, v) of $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$ is given by

$$\mathcal{W}_{u,v}^{\mathbf{F}} = \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle v, \mathbf{F}(x) \rangle - \langle u, x \rangle)}.$$

$$\mathcal{W}_{u,v}^{\mathbf{F}} = q^n \cdot C_{u,v}^{\mathbf{F}}$$

Definition

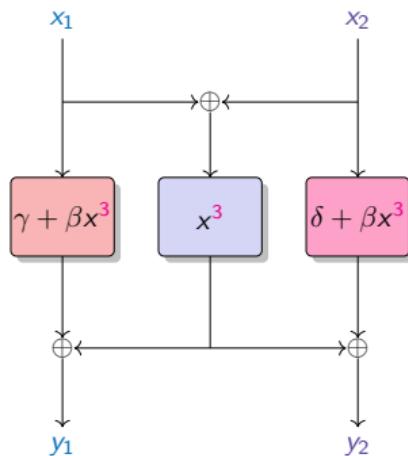
The **Linearity** $\mathcal{L}_{\mathbf{F}}$ of $\mathbf{F} : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^m$ is the highest Walsh coefficient.

$$\mathcal{L}_{\mathbf{F}} = \max_{u,v \in \mathbb{F}_q^n, v \neq 0} |\mathcal{W}_{u,v}^{\mathbf{F}}|.$$

Closed Flystel in \mathbb{F}_{2^n}

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Degenerate case of Butterfly

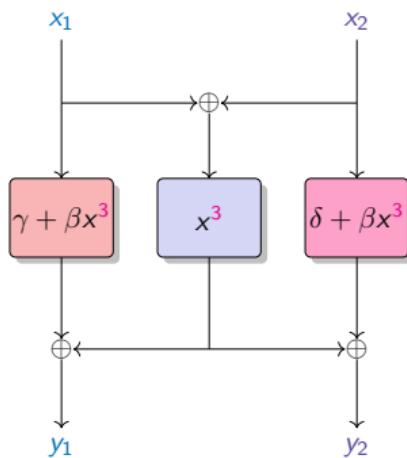


Closed Flystel in \mathbb{F}_{2^n}

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Degenerate case of Butterfly

If $\beta \neq 0$, then [Li et al., 2018] stated that



Differential uniformity

$$\delta_{\mathsf{F}} = \max_{\substack{a \neq 0, b}} |\{x \in \mathbb{F}_{2^n}^2, \mathsf{F}(x+a) + \mathsf{F}(x) = b\}|$$

Bound

$$\delta_F < 4$$

Linearity

$$\mathcal{L}_F = \max_{u, v \neq 0} \left| \sum_{x \in \mathbb{F}_{2n}^2} (-1)^{(\langle v, F(x) \rangle + \langle u, x \rangle)} \right|$$

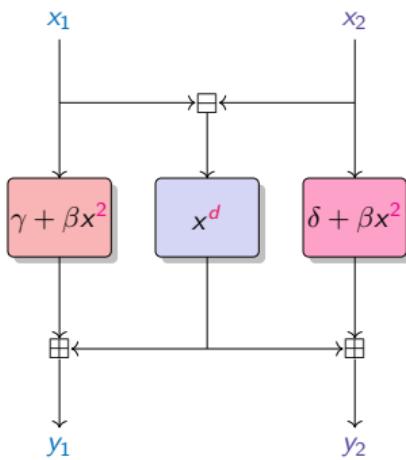
Bound:

$$\mathcal{L}_F \leq 2^{n+1}$$

Closed Flystel in \mathbb{F}_p

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

$x \mapsto x^d$ a perm. (usually $d = 3, 5$)



Differential uniformity

$$\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, F(x+a) - F(x) = b\}|$$

Bound:

$$\delta_F \leq d - 1$$

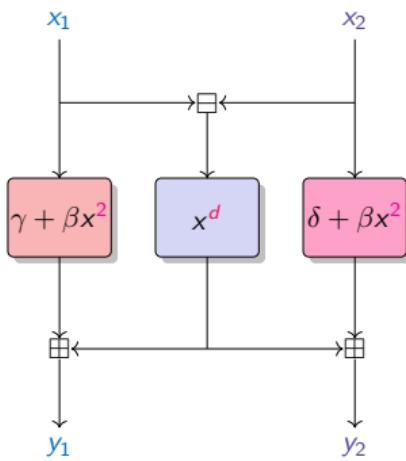
Solving an open problem

Finding APN permutations over \mathbb{F}_p^2 .

Closed Flystel in \mathbb{F}_p

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

$x \mapsto x^d$ a perm. (usually $d = 3, 5$)



Differential uniformity

$$\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, F(x+a) - F(x) = b\}|$$

Bound:

$$\delta_F \leq d - 1$$

Solving an open problem

Finding APN permutations over \mathbb{F}_p^2 .

$$\mathcal{L}_F = \max_{u, v \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right)(\langle v, F(x) \rangle - \langle u, x \rangle)} \right|$$

How to determine an accurate bound for the linearity of the Closed Flystel in \mathbb{F}_p ?

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with $\deg(f) = d$. Then

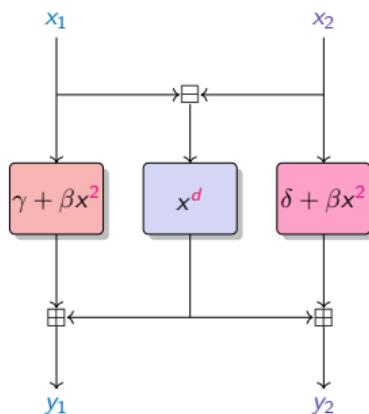
$$\mathcal{L}_f \leq (d - 1)\sqrt{p}$$

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with $\deg(f) = d$. Then

$$\mathcal{L}_f \leq (d-1)\sqrt{p}$$



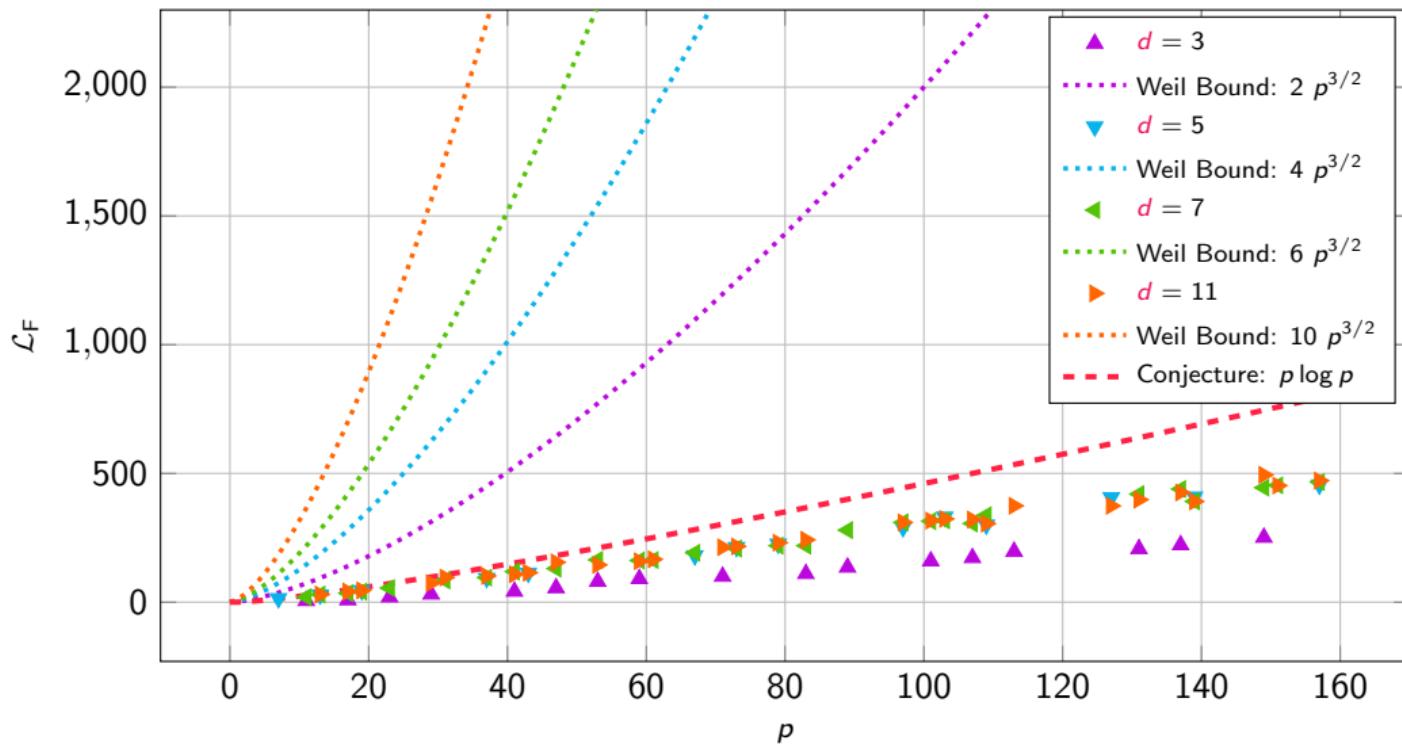
Closed Flystel.

$$\mathcal{L}_F \leq (d-1)p\sqrt{p} ? \quad \begin{cases} \mathcal{L}_{\gamma + \beta x^2} \leq \sqrt{p} , \\ \mathcal{L}_{x^d} \leq (d-1)\sqrt{p} , \\ \mathcal{L}_{\delta + \beta x^2} \leq \sqrt{p} . \end{cases}$$

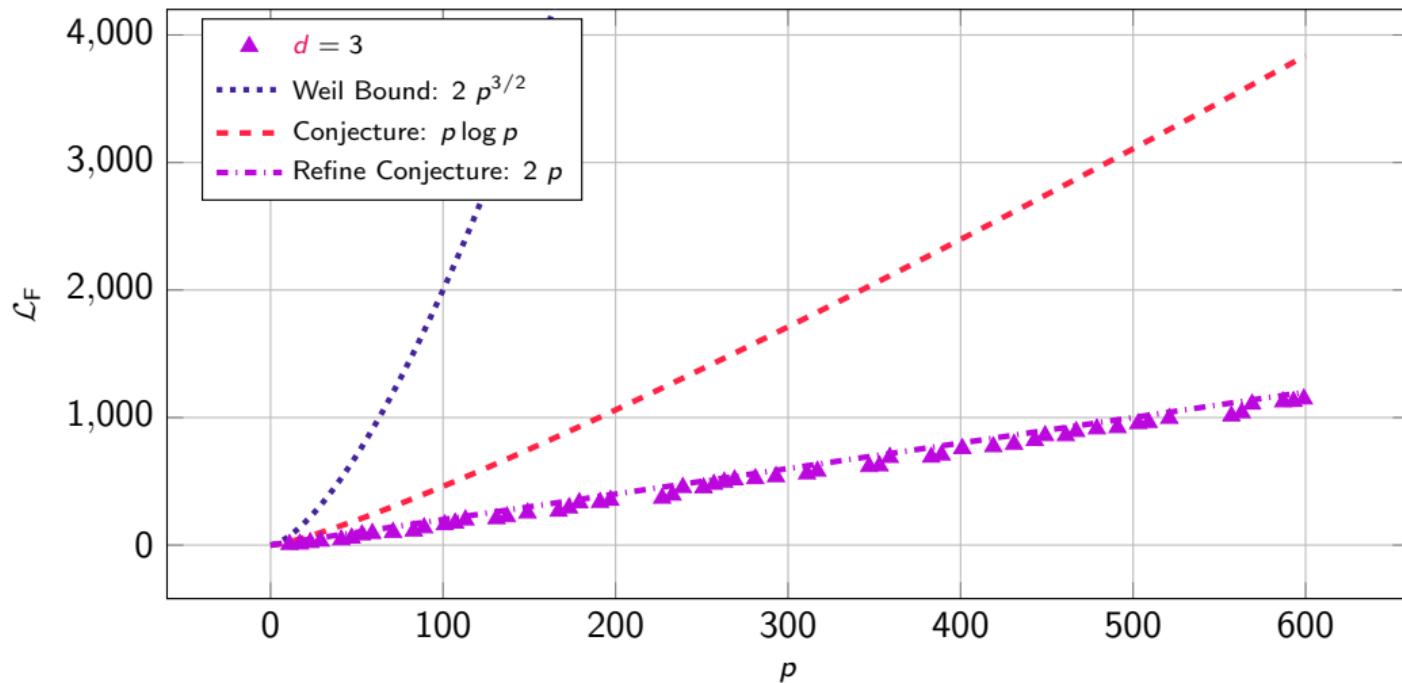
Conjecture

$$\mathcal{L}_F = \sum_{x \in \mathbb{F}_p^2} e\left(\frac{2i\pi}{p}(\langle v, F(x) \rangle - \langle u, x \rangle)\right) \leq p \log p$$

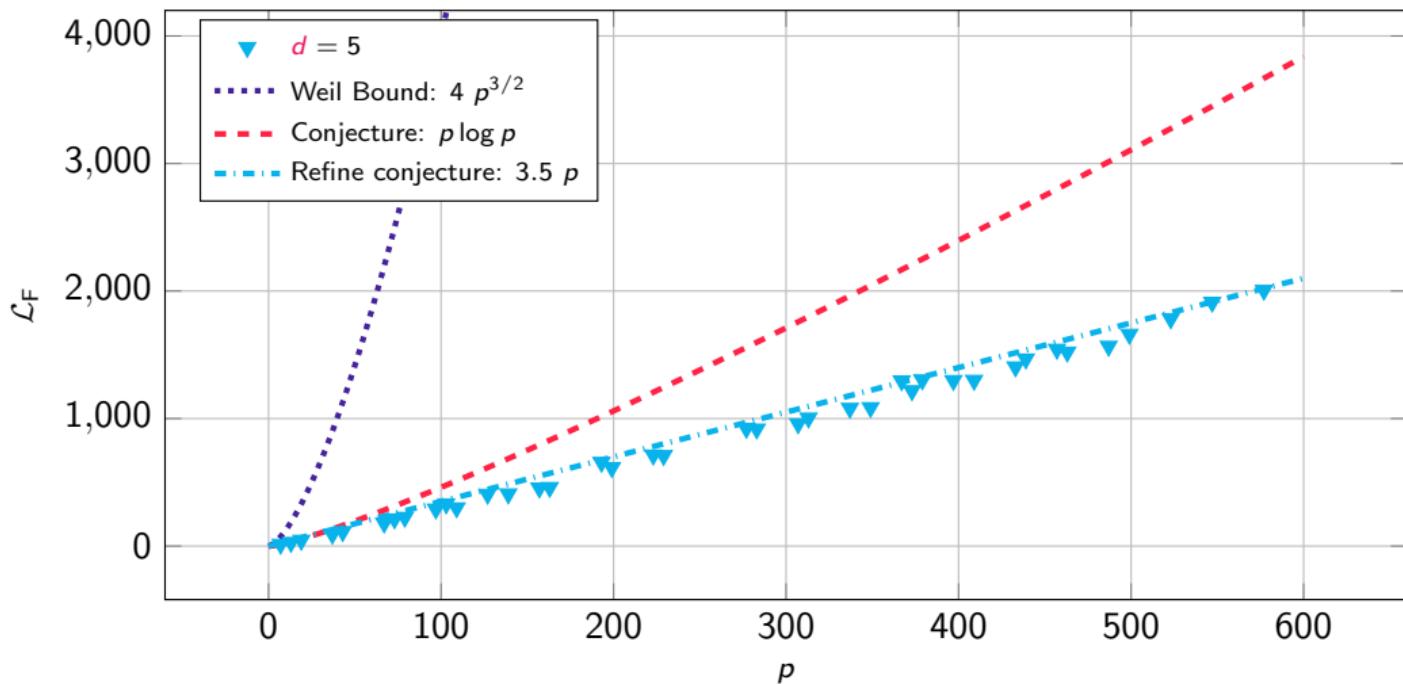
Experimental results



Experimental results ($d = 3$)



Experimental results ($d = 5$)



Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

- ★ Applications of results for exponential sums (generalization of Weil bound)

$$\mathcal{W}_{\mathbf{u}, \mathbf{v}}^F = \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle \mathbf{v}, F(x) \rangle - \langle \mathbf{u}, x \rangle)} \quad \rightarrow \quad S(f) = \sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}.$$

- ★ \mathbb{F}_q is a finite field s.t. q is a power of a prime p .
- ★ Functions with 2 variables $F \in \mathbb{F}_q[\mathbf{x}_1, \mathbf{x}_2]$.

Generalizations of Weil bound

[Beyne and Bouvier, 2024]

★ Deligne bound

★ Application to the **Generalized Butterfly** construction

★ Denef and Loeser bound

★ Application to **3-round Feistel** construction

★ Rojas-León bound

★ Application to the **Generalized Flystel** construction

Smoothness

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by $f = 0$ is **smooth**, if the system

$$f = \partial f / \partial \textcolor{blue}{x}_1 = \dots = \partial f / \partial \textcolor{violet}{x}_n = 0$$

has no non zero solutions.

Smoothness

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by $f = 0$ is **smooth**, if the system

$$f = \partial f / \partial x_1 = \dots = \partial f / \partial x_n = 0$$

has no non zero solutions.

Examples:

- * $f(x_1, x_2) = 2x_1^3 + x_2^2 = 0$ is **smooth**, since

$$\partial f / \partial x_1 = 6x_1^2 \quad \text{and} \quad \partial f / \partial x_2 = 2x_2 ,$$

so that

$$f = \partial f / \partial x_1 = \partial f / \partial x_2 = 0 \quad \Leftrightarrow \quad (x_1, x_2) = (0, 0) .$$

Smoothness

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by $f = 0$ is **smooth**, if the system

$$f = \partial f / \partial x_1 = \dots = \partial f / \partial x_n = 0$$

has no non zero solutions.

Examples:

- * $f(x_1, x_2) = 2x_1^3 + x_2^2 = 0$ is **smooth**, since

$$\partial f / \partial x_1 = 6x_1^2 \quad \text{and} \quad \partial f / \partial x_2 = 2x_2 ,$$

so that

$$f = \partial f / \partial x_1 = \partial f / \partial x_2 = 0 \quad \Leftrightarrow \quad (x_1, x_2) = (0, 0) .$$

- * $f(x_1, x_2) = x_1^2 + x_2^2 - 2x_2 + 1 = 0$ is **not smooth**, since

$$\partial f / \partial x_1 = 2x_1 \quad \text{and} \quad \partial f / \partial x_2 = 2x_2 - 2 ,$$

so that

$$f = \partial f / \partial x_1 = \partial f / \partial x_2 = 0 \quad \Leftrightarrow \quad (x_1, x_2) = (0, 1) .$$

Deligne Theorem

Theorem [Deligne, 1974]

Let q be a power of a prime p .

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$ be a polynomial of degree d , with $\gcd(d, p) = 1$.

Let f_d be the **degree d homogeneous component** of f , i.e.

$$f = f_d + g, \deg(g) < d.$$

If the hypersurface defined by $f_d = 0$ is **smooth**, then, we have

$$|S(f)| = \left| \sum_{x \in \mathbb{F}_q^n} \omega^{f(x)} \right| \leq (d-1)^n \cdot q^{n/2}.$$

Deligne Theorem

Theorem [Deligne, 1974]

Let q be a power of a prime p .

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$ be a polynomial of degree d , with $\gcd(d, p) = 1$.

Let f_d be the **degree d homogeneous component** of f , i.e.

$$f = f_d + g, \deg(g) < d.$$

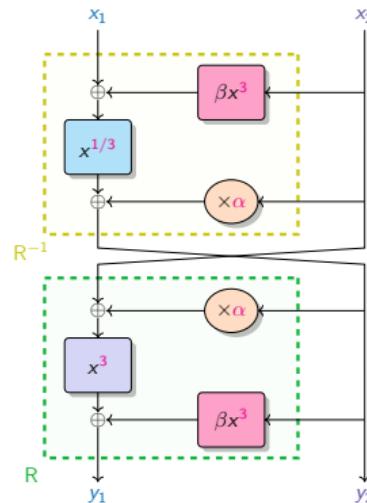
If the hypersurface defined by $f_d = 0$ is **smooth**, then, we have

$$|S(f)| = \left| \sum_{x \in \mathbb{F}_q^n} \omega^{f(x)} \right| \leq (d-1)^n \cdot q^{n/2}.$$

Linearity bound for $n = 2$: $\mathcal{L}_F \leq (d-1)^2 \cdot q$.

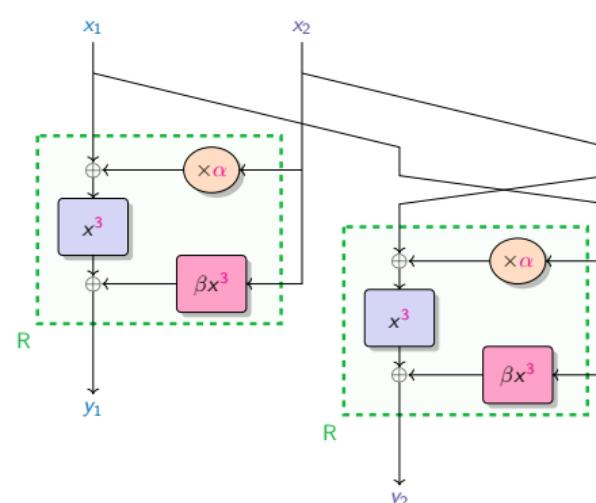
Butterfly - Definition

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, $\mathbb{F}_{2^n}^2$, n odd.



Open variant.

$$\begin{cases} y_1 = (\alpha x_2 + \beta y_2)^3 + (\beta y_2)^3 \\ y_2 = (\alpha x_1 - (\beta x_2)^3)^{1/3} - \alpha x_2 \end{cases}$$

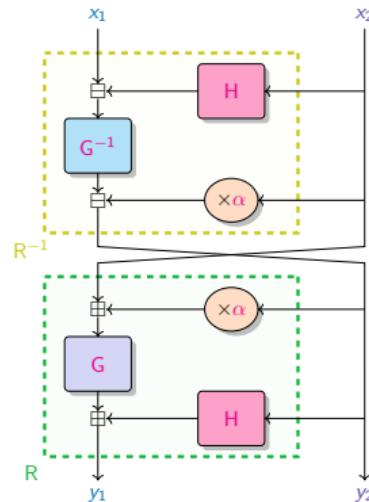


Closed variant.

$$\begin{cases} y_1 = (\textcolor{blue}{x}_1 + \alpha \textcolor{violet}{x}_2)^3 + (\beta \textcolor{brown}{x}_2)^3 \\ y_2 = (\textcolor{brown}{x}_2 + \alpha \textcolor{blue}{x}_1)^3 + (\beta \textcolor{violet}{x}_1)^3. \end{cases}$$

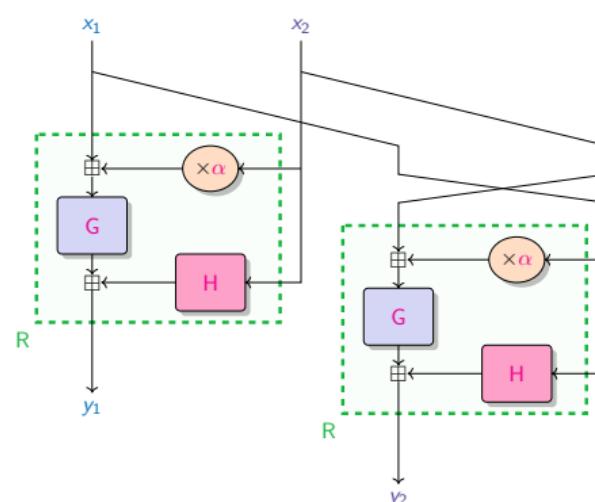
Generalized Butterfly - Definition

BUTTERFLY[G, H, α], with $G : \mathbb{F}_q \rightarrow \mathbb{F}_q$ a permutation, $H : \mathbb{F}_q \rightarrow \mathbb{F}_q$ a function and $\alpha \in \mathbb{F}_q$.



Open variant.

$$\begin{cases} y_1 &= \mathbf{G}(x_2 + \alpha y_2) + \mathbf{H}(y_2) \\ y_2 &= \mathbf{G}^{-1}(x_1 - \mathbf{H}(x_2)) - \alpha x_2 \end{cases}.$$



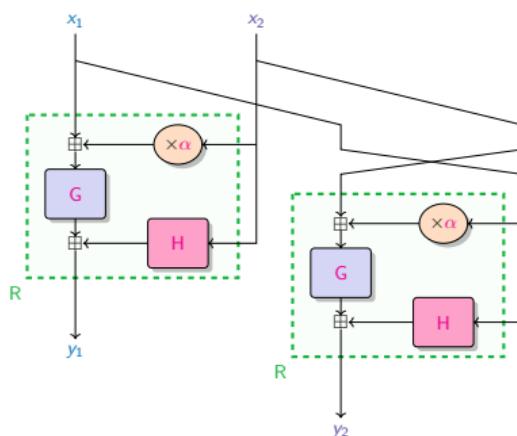
Closed variant.

$$\begin{cases} y_1 = \mathbf{G}(x_1 + \alpha x_2) + \mathbf{H}(x_2) \\ y_2 = \mathbf{G}(x_2 + \alpha x_1) + \mathbf{H}(x_1) \end{cases}.$$

Generalized Butterfly - Bound

Let $F = \text{BUTTERFLY}[G, H, \alpha]$, with G a permutation, H a function and α in \mathbb{F}_q .

$$f(\textcolor{blue}{x}_1, \textcolor{violet}{x}_2) = \langle (v_1, v_2), \mathsf{F}(\textcolor{blue}{x}_1, \textcolor{violet}{x}_2) \rangle - \langle (u_1, u_2), (\textcolor{blue}{x}_1, \textcolor{violet}{x}_2) \rangle \\ = v_1 \mathsf{G}(\textcolor{blue}{x}_1 + \alpha \textcolor{violet}{x}_2) + v_2 \mathsf{G}(\textcolor{violet}{x}_2 + \alpha \textcolor{blue}{x}_1) + v_1 \mathsf{H}(\textcolor{violet}{x}_2) + v_2 \mathsf{H}(\textcolor{blue}{x}_1) - u_1 \textcolor{blue}{x}_1 - u_2 \textcolor{violet}{x}_2 .$$

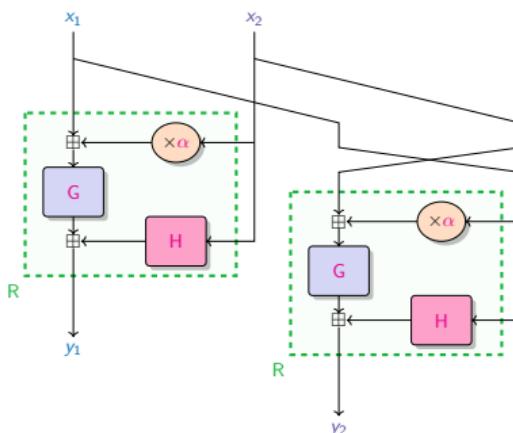


$$\begin{cases} y_1 = \mathbf{G}(x_1 + \alpha x_2) + \mathbf{H}(x_2) \\ y_2 = \mathbf{G}(x_2 + \alpha x_1) + \mathbf{H}(x_1). \end{cases}$$

Generalized Butterfly - Bound

Let $F = \text{BUTTERFLY}[G, H, \alpha]$, with G a permutation, H a function and α in \mathbb{F}_q .

$$\begin{aligned} f(x_1, x_2) &= \langle (v_1, v_2), F(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle \\ &= v_1 G(x_1 + \alpha x_2) + v_2 G(x_2 + \alpha x_1) + v_1 H(x_2) + v_2 H(x_1) - u_1 x_1 - u_2 x_2 . \end{aligned}$$



$$\begin{cases} y_1 &= G(x_1 + \alpha x_2) + H(x_2) \\ y_2 &= G(x_2 + \alpha x_1) + H(x_1) . \end{cases}$$

Linearity Bound

* If $d = \deg G > \deg H > 1$, then and $\alpha \neq \pm 1$,

$$f_d = (x_1 + \alpha x_2)^d + v_2/v_1 (x_2 + \alpha x_1)^d = 0 \text{ is smooth.}$$

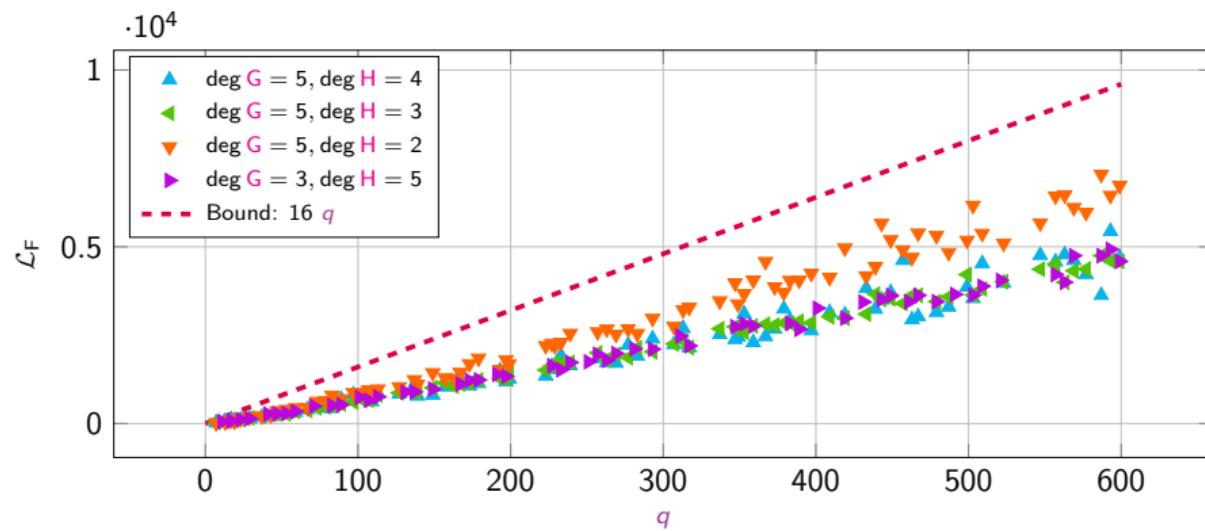
* If $d = \deg H > \deg G > 1$, then

$$f_d = x_1^d + v_1/v_2 x_2^d = 0 \text{ is smooth.}$$

$$\mathcal{L}_F \leq (\max\{\deg G, \deg H\} - 1)^2 \cdot q$$

Generalized Butterfly - Results

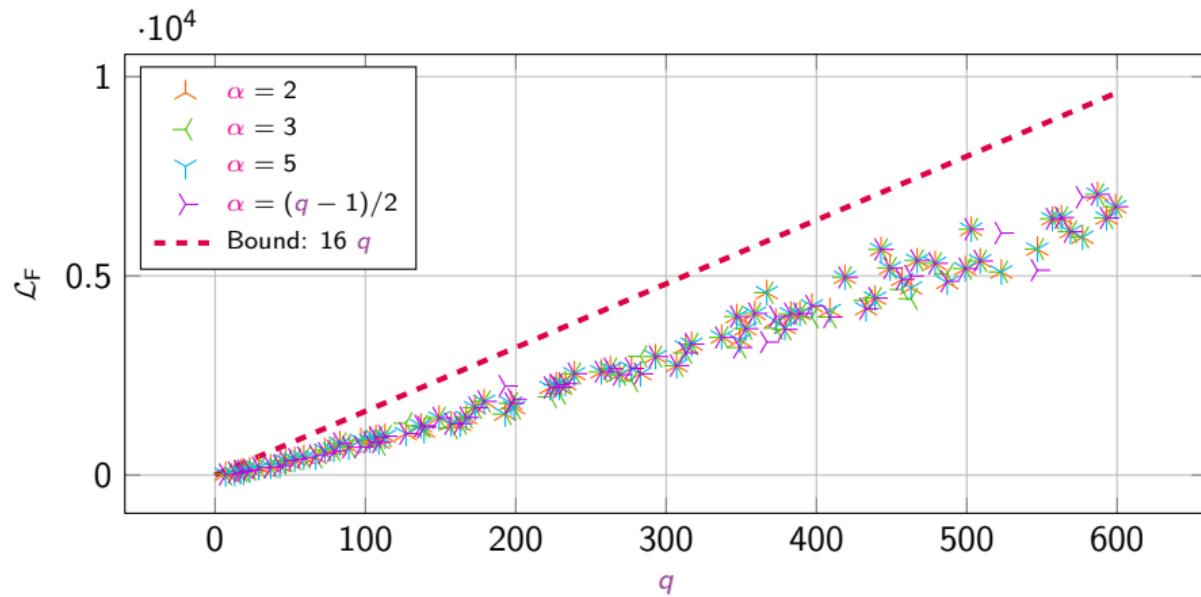
Let $F = \text{BUTTERFLY}[G, H, \alpha]$ with G and H monomial functions.



Low-degree functions ($\max\{\deg \mathbf{G}, \deg \mathbf{H}\} = 5$ and $\alpha = 2$).

Generalized Butterfly - Results

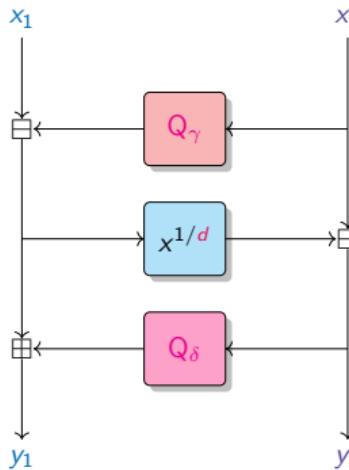
Let $F = \text{BUTTERFLY}[G, H, \alpha]$ with G and H monomial functions.



Influence of α (deg G = 5 and deg H = 2).

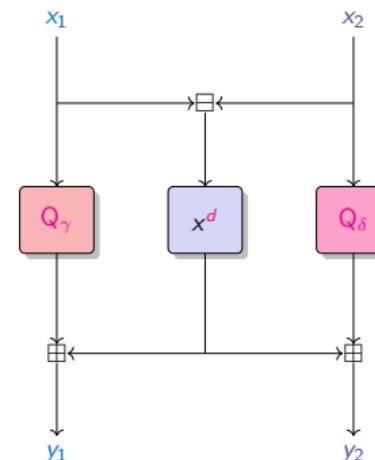
Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].



Open variant.

$$\begin{cases} y_1 = x_1 - Q_\gamma(x_2) + Q_\delta(x_2 - (x_1 - Q_\gamma(x_2))^{1/d}) \\ y_2 = x_2 - (x_1 - Q_\gamma(x_2))^{1/d}. \end{cases}$$

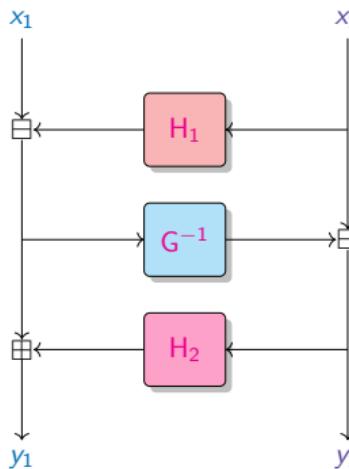


Closed variant.

$$\begin{cases} y_1 = (\textcolor{blue}{x}_1 - \textcolor{violet}{x}_2)^d + \textcolor{red}{Q}_\gamma(\textcolor{blue}{x}_1) \\ y_2 = (\textcolor{blue}{x}_1 - \textcolor{violet}{x}_2)^d + \textcolor{red}{Q}_\delta(\textcolor{blue}{x}_2) . \end{cases}$$

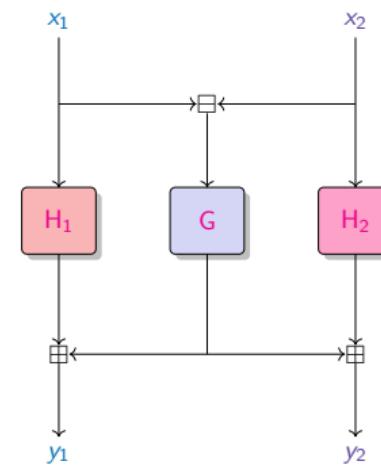
Generalized Flystel - Definition

$F = \text{FLYSTEL}[H_1, G, H_2]$, with $G : \mathbb{F}_q \rightarrow \mathbb{F}_q$ a permutation, and $H_1, H_2 : \mathbb{F}_q \rightarrow \mathbb{F}_q$ functions.



Open variant.

$$\begin{cases} y_1 &= x_1 - \mathbf{H}_1(x_2) + \mathbf{H}_2(x_2 - \mathbf{G}^{-1}(x_1 - \mathbf{H}_1(x_2))) \\ y_2 &= x_2 - \mathbf{G}^{-1}(x_1 - \mathbf{H}_1(x_2)) . \end{cases}$$



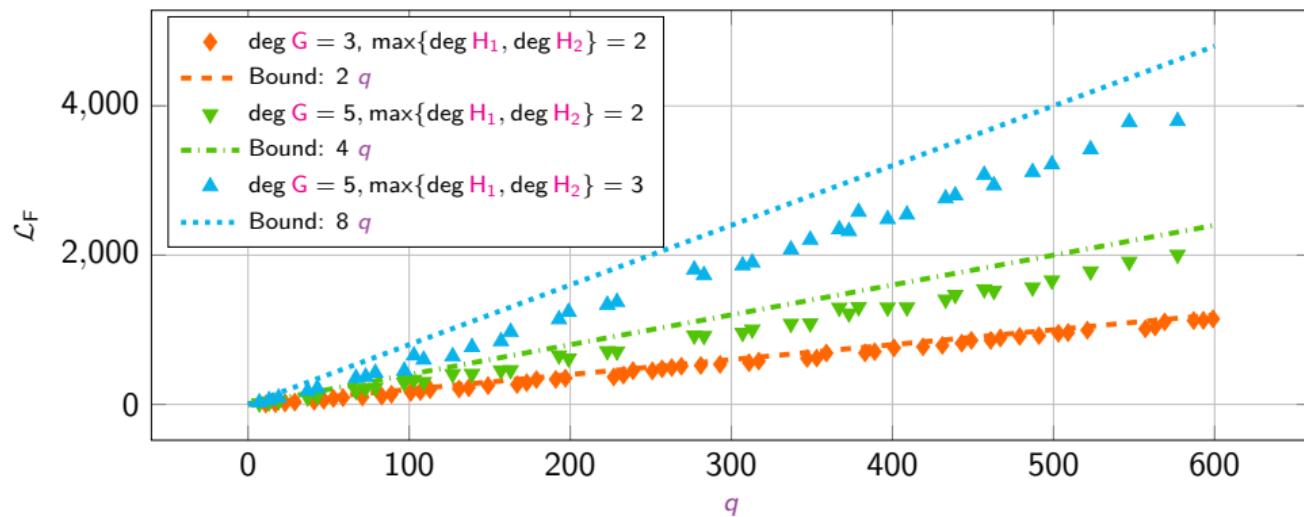
Closed variant.

$$\begin{cases} y_1 &= \mathbf{G}(x_1 - x_2) + \mathbf{H}_1(x_1) \\ y_2 &= \mathbf{G}(x_1 - x_2) + \mathbf{H}_2(x_2). \end{cases}$$

Generalized Flystel - Results

Let $F = \text{FLYSTEL}[H_1, G, H_2]$ with H_1 , G and H_2 monomials.

$$\mathcal{L}_F \leq (\deg G - 1)(\max\{\deg H_1, \deg H_2\} - 1) \cdot q$$

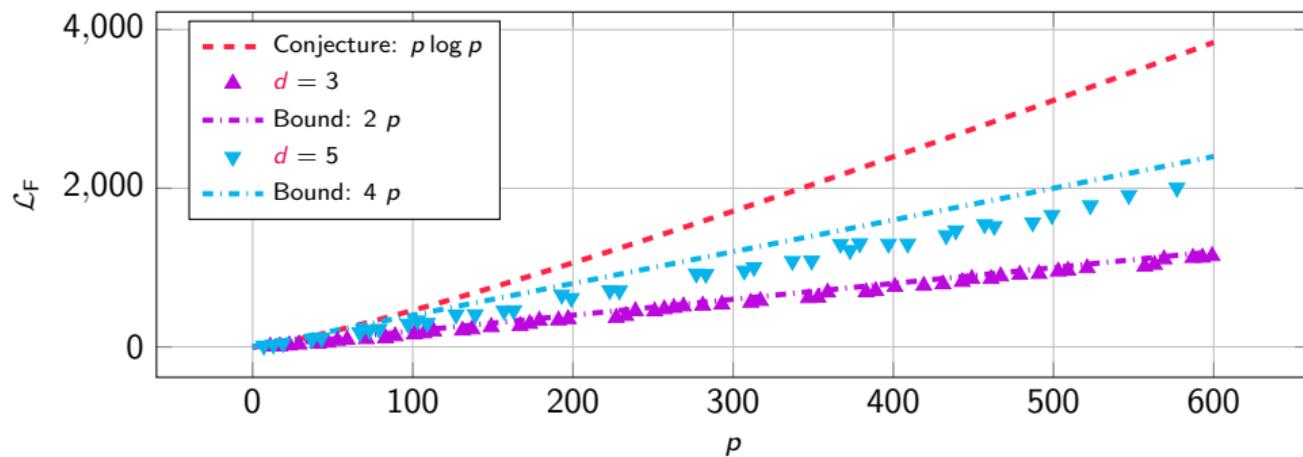


Solving conjecture

Proposition

Let $F = \text{FLYSTEL}[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^\times$. Then

$$\mathcal{L}_F \leq (d - 1)p .$$



Conclusions

- ★ **Butterfly** construction found interest over prime fields

Conclusions

- ★ **Butterfly** construction found interest over prime fields
- ★ Solving the open problem of finding APN permutations over \mathbb{F}_p^2

Conclusions

- ★ **Butterfly** construction found interest over prime fields
- ★ Solving the open problem of finding APN permutations over \mathbb{F}_p^2
- ★ Bounds on exponential sums have direct application to linear cryptanalysis
 - ★ Deligne, 1974 Generalization of the **Butterfly** construction
 - ★ Denef and Loeser, 1991 3-round **Feistel** network
 - ★ Rojas-León, 2006 Generalization of the **Flystel** construction

$$F \in \mathbb{F}_q[x_1, x_2], \exists C \in \mathbb{F}_q, \mathcal{L}_F \leq C \times q$$

Conclusions

- ★ **Butterfly** construction found interest over prime fields
- ★ Solving the open problem of finding APN permutations over \mathbb{F}_p^2
- ★ Bounds on exponential sums have direct application to linear cryptanalysis
 - ★ Deligne, 1974 Generalization of the **Butterfly** construction
 - ★ Denef and Loeser, 1991 3-round **Feistel** network
 - ★ Rojas-León, 2006 Generalization of the **Flystel** construction

$$F \in \mathbb{F}_q[x_1, x_2], \exists C \in \mathbb{F}_q, \mathcal{L}_F \leq C \times q$$

- ★ Solving conjecture on the linearity of the Flystel construction in Anemoi

Conclusions

- ★ **Butterfly** construction found interest over prime fields
- ★ Solving the open problem of finding APN permutations over \mathbb{F}_p^2
- ★ Bounds on exponential sums have direct application to linear cryptanalysis
 - ★ Deligne, 1974 Generalization of the **Butterfly** construction
 - ★ Denef and Loeser, 1991 3-round **Feistel** network
 - ★ Rojas-León, 2006 Generalization of the **Flystel** construction

$$F \in \mathbb{F}_q[x_1, x_2], \exists C \in \mathbb{F}_q, \mathcal{L}_F \leq C \times q$$

- ★ Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

Cohomological framework

$$S(f) = \sum_{x \in \mathbb{F}_q^n} \chi(F(x)) \psi(-x)$$

Cohomological framework

$$S(f) = \sum_{x \in \mathbb{F}_q^n} \chi(F(x)) \psi(-x)$$

Cohomological framework

$$|S(f)| = \left| \sum_{i=0}^{2n} (-1)^i \text{Tr}(F \mid H_c^i(\mathbb{A}^n, \mathcal{L})) \right|$$

Sum of **traces** of the Frobenius automorphism on ℓ -adic cohomology groups.

Cohomological framework

$$S(f) = \sum_{x \in \mathbb{F}_q^n} \chi(F(x)) \psi(-x)$$

Cohomological framework

$$|S(f)| = \left| \sum_{i=0}^{2n} (-1)^i \text{Tr}(F \mid H_c^i(\mathbb{A}^n, \mathcal{L})) \right|$$

Sum of **traces** of the Frobenius automorphism on ℓ -adic cohomology groups.

Sum of **traces** of a **linear map** on a vector space of finite dimension.

Cohomological framework

$$S(f) = \sum_{x \in \mathbb{F}_q^n} \chi(F(x)) \psi(-x)$$

Cohomological framework

$$|S(f)| = \left| \sum_{i=0}^{2n} (-1)^i \text{Tr}(F \mid H_c^i(\mathbb{A}^n, \mathcal{L})) \right|$$

Sum of **traces** of the Frobenius automorphism on ℓ -adic cohomology groups.

Sum of **traces** of a **linear map** on a vector space of finite dimension.

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

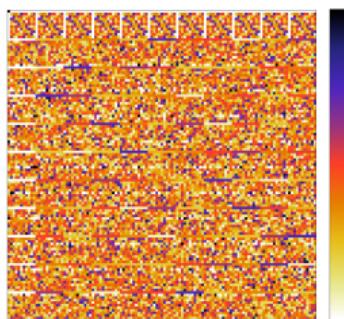
(on-going work with Christophe Levrat)

Perspectives

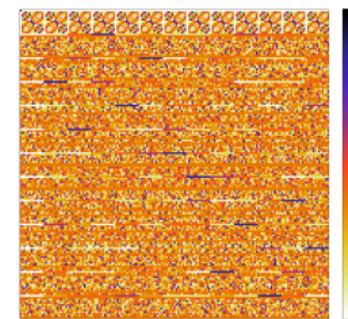
Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

(on-going work with Christophe Levrat)



Closed Butterfly ($q = 11$)



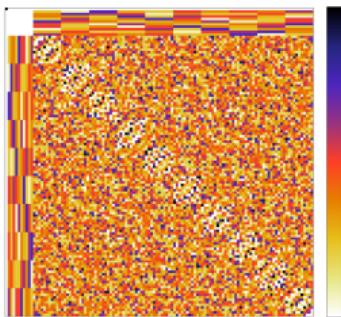
Closed Butterfly ($q = 13$)

Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

(on-going work with Christophe Levrat)



Open Butterfly ($q = 11$)

Open Butterfly ($q = 13$)

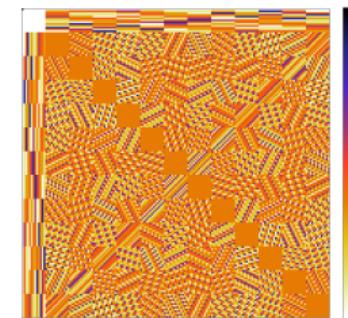
Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

(on-going work with Christophe Levrat)

Open Flystel ($q = 11$)



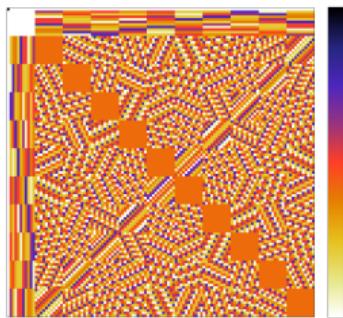
Open Flystel (q = 13)

Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

(on-going work with Christophe Levrat)



Open Flystel ($q = 11$)

Open Flystel (q = 13)

Thank you

