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Original Construction Challenges in Fp Linearity Bounds

Differential Uniformity

Differential uniformity

Let F : F2n → F2n be a function, then

𝛿F = max
a ̸=0,b

|{x ∈ F2n ,F(x + a) + F(x) = b}|

Examples:

⋆ If F : x ↦→ x2n−2, then

𝛿F =

{︃
4 if n is even

2 if n is odd
.

⋆ If F : x ↦→ x2k+1, then

𝛿F = 2 .

APN (Almost Perfect Non-linear) functions

A function F is APN if for all a ̸= 0 and b, we have 𝛿F ≤ 2.
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Linearity

Linearity

Let F : F2n → F2n be a function, then

𝒲F = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒ ∑︁
x∈F2n

(−1)u·x+v ·F(x)

⃒⃒⃒⃒
⃒⃒

Correlation

The maximum correlation for a linear approximation (u, v) is

CF = 2−n · 𝒲F

Examples:

⋆ If F : x ↦→ Lx + c, then

𝒲F = 2n and CF = 1 .

⋆ If F : x ↦→ x−1, with n even, then

𝒲F = 2n/2+1 and CF = 2−n/2+1 .
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CCZ-equivalence

Inversion

ΓF = {(x ,F(x)) , x ∈ F2n} and ΓF−1 =
{︀(︀

y ,F−1(y)
)︀
, y ∈ F2n

}︀
Noting that

ΓF =
{︀(︀

F−1(y), y
)︀
, y ∈ F2n

}︀
,

then, we have:

ΓF =

(︂
0 1
1 0

)︂
ΓF−1 .

Definition [Carlet, Charpin and Zinoviev, 1998]

F : F2n → F2n and G : F2n → F2n are CCZ-equivalent if

ΓF = ℒ(ΓG) + c , where ℒ is linear.
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Advantages of CCZ-equivalence

If F : F2n → F2n and G : F2n → F2n are CCZ-equivalent. Then

⋆ Differential properties are the same: 𝛿F = 𝛿G .

Differential uniformity

𝛿F = max
a ̸=0,b

|{x ∈ F2n ,F(x + a) + F(x) = b}|

⋆ Linear properties are the same: 𝒲F = 𝒲G .

Linearity

𝒲F = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒ ∑︁
x∈F2n

(−1)u·x+v·F(x)

⃒⃒⃒⃒
⃒⃒
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Butterfly - Definition

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, F2
2n , n odd.
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Take-away

⋆ Butterfly introduced over binary fields

⋆ Structure of APN permutations on an even number of bits

⋆ 2 variants of the construction: Open and Closed

⋆ An example of CCZ-equivalent functions

⋆ Same differential and linear properties for the 2 variants
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New symmetric primitives
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A new context

Traditional case

Alphabet

Operations based on logical gates or CPU
instructions.

Fn
2, with n ≃ 4, 8

Cryptanalysis

Decades of cryptanalysis

⋆ algebraic attacks ✓

⋆ differential attacks ✓

⋆ linear attacks ✓

⋆ ...

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arith-
metic.

Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 32

Cryptanalysis

≤ 8 years of cryptanalysis

⋆ algebraic attacks ✓

⋆ differential attacks ✗

⋆ linear attacks ✗

⋆ ...
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Original Construction Challenges in Fp Linearity Bounds

The Flystel in Anemoi

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023]

Butterfly + Feistel ⇒ Flystel

Q𝛾 : Fq → Fq and Q𝛿 : Fq → Fq two quadratic functions, and E : Fq → Fq, x ↦→ xd a permutation

High-Degree
permutation

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

x1/d

Q𝛿

Open Flystel ℋ.

Low-Degree
function

x1 x2

⊟

⊞ ⊞

y1 y2

Q𝛾 xd Q𝛿

Closed Flystel 𝒱.

Γℋ = ℒ(Γ𝒱) s.t. ((x1, x2), (y1, y2)) = ℒ ( ((y2, x2), (x1, y1)) )
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How to adapt definitions

Differential uniformity

In binary fields

𝛿F = max
a ̸=0,b

|{x ∈ F2n ,F(x + a) + F(x) = b}|

In prime fields

𝛿F = max
a ̸=0,b

|{x ∈ Fp,F(x + a)− F(x) = b}|

Linearity

In binary fields

𝒲F = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒ ∑︁
x∈F2n

(−1)u·x+v ·F(x)

⃒⃒⃒⃒
⃒⃒
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Original Construction Challenges in Fp Linearity Bounds

Characters

Definition

A character of a finite abelian group G is a homomorphism

𝜒 : G → C× ,

where C× is the multiplicative group of nonzero complex numbers.

In particular, we have
𝜒(1) = 1 ,

and for a1, a2 ∈ G
𝜒(a1a2) = 𝜒(a1)𝜒(a2) .

𝜒(a) is a root of unity

Definition

A linear approximation of F : Fn
q → Fm

q is a pair of characters (𝜒, 𝜓).
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Correlation of linear approximations

Definition

The correlation of the linear approximation (𝜒, 𝜓) of F : Fn
q → Fm

q is

CF
𝜒,𝜓 =

1

qn

∑︁
x∈Fn

q

𝜒
(︀
F(x)

)︀
𝜓(−x) .

Let 𝜔 be a primitive element, Fq → C× s.t. 𝜒(F(x)) = 𝜔⟨v ,F(x)⟩ and 𝜓(x) = 𝜔⟨u,x⟩. Then

CF
𝜒,𝜓 =

1

qn

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) .

Examples:

⋆ If F : Fn
2 → Fm

2 , then

CF
u,v =

1

2n

∑︁
x∈Fn2

(−1)(⟨v,F(x)⟩+⟨u,x⟩) .

⋆ If F : Fn
p → Fm

p , then

CF
u,v =

1

pn

∑︁
x∈Fnp

e

(︁
2i𝜋
p

)︁
(⟨v,F(x)⟩−⟨u,x⟩)

.
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Walsh transform

Definition

The Walsh transform for the character 𝜔 of the linear approximation (u, v) of F : Fn
q → Fm

q

is given by

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) .

𝒲F
u,v = qn · CF

u,v

Definition

The Linearity ℒF of F : Fn
q → Fm

q is the highest Walsh coefficient.

ℒF = max
u,v∈Fq,v ̸=0

⃒⃒
𝒲F

u,v

⃒⃒
.

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 17 / 39



Original Construction Challenges in Fp Linearity Bounds

Walsh transform

Definition

The Walsh transform for the character 𝜔 of the linear approximation (u, v) of F : Fn
q → Fm

q

is given by

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) .

𝒲F
u,v = qn · CF

u,v

Definition

The Linearity ℒF of F : Fn
q → Fm

q is the highest Walsh coefficient.

ℒF = max
u,v∈Fq,v ̸=0

⃒⃒
𝒲F

u,v

⃒⃒
.

Butterfly Constructions: From binary to prime fields. Clémence Bouvier 17 / 39



Original Construction Challenges in Fp Linearity Bounds

Closed Flystel in F2n

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Degenerate case of Butterfly

x1 x2

⊕

⊕ ⊕

y1 y2

𝛾 + 𝛽x3 x3 𝛿 + 𝛽x3

If 𝛽 ̸= 0, then [Li et al., 2018] stated that

Differential uniformity

𝛿F = max
a ̸=0,b

|{x ∈ F2
2n ,F(x + a) + F(x) = b}|

Bound:
𝛿F ≤ 4

Linearity

ℒF = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒ ∑︁
x∈F2

2n

(−1)(⟨v,F(x)⟩+⟨u,x⟩)

⃒⃒⃒⃒
⃒⃒

Bound:
ℒF ≤ 2n+1
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Original Construction Challenges in Fp Linearity Bounds

Closed Flystel in Fp

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x ↦→ xd a perm. (usually d = 3, 5)

x1 x2

⊟

⊞ ⊞

y1 y2

𝛾 + 𝛽x2 xd 𝛿 + 𝛽x2

Differential uniformity

𝛿F = max
a ̸=0,b

|{x ∈ F2
p,F(x + a)− F(x) = b}|

Bound:
𝛿F ≤ d − 1

Solving an open problem

Finding APN permutations over F2
p.

ℒF = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒∑︁
x∈F2

p

e(
2i𝜋
p )(⟨v ,F(x)⟩−⟨u,x⟩)

⃒⃒⃒⃒
⃒⃒

How to determine an accurate bound for the linearity of the Closed Flystel in Fp?
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Original Construction Challenges in Fp Linearity Bounds

Closed Flystel in Fp

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x ↦→ xd a perm. (usually d = 3, 5)
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Original Construction Challenges in Fp Linearity Bounds

Weil bound

Proposition [Weil, 1948]

Let f ∈ Fp[x ] be a univariate polynomial with deg(f ) = d . Then

ℒf ≤ (d − 1)
√
p

x1 x2

⊟

⊞ ⊞

y1 y2

𝛾 + 𝛽x2 xd 𝛿 + 𝛽x2

Closed Flystel.

ℒF ≤ (d − 1)p
√
p ?

⎧⎪⎨⎪⎩
ℒ𝛾+𝛽x2 ≤ √

p ,

ℒxd ≤ (d − 1)
√
p ,

ℒ𝛿+𝛽x2 ≤ √
p .

Conjecture

ℒF =
∑︁
x∈F2

p

e(
2i𝜋
p )(⟨v ,F(x)⟩−⟨u,x⟩) ≤ p log p
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Original Construction Challenges in Fp Linearity Bounds

Experimental results
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Weil Bound: 2 p3/2

d = 5

Weil Bound: 4 p3/2

d = 7

Weil Bound: 6 p3/2

d = 11

Weil Bound: 10 p3/2

Conjecture: p log p
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Original Construction Challenges in Fp Linearity Bounds

Experimental results (d = 3)
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Original Construction Challenges in Fp Linearity Bounds

Experimental results (d = 5)
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Original Construction Challenges in Fp Linearity Bounds

Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

⋆ Applications of results for exponential sums (generalization of Weil bound)

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) → S(f ) =
∑︁
x∈Fn

q

𝜔f (x) .

⋆ Fq is a finite field s.t. q is a power of a prime p.

⋆ Functions with 2 variables F ∈ Fq[x1, x2].
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Original Construction Challenges in Fp Linearity Bounds

Generalizations of Weil bound

[Beyne and Bouvier, 2024]

⋆ Deligne bound

⋆ Application to the Generalized Butterfly construction

⋆ Denef and Loeser bound

⋆ Application to 3-round Feistel construction

⋆ Rojas-León bound

⋆ Application to the Generalized Flystel construction
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Original Construction Challenges in Fp Linearity Bounds

Smoothness

Definition

Let f ∈ Fq[x1, . . . , xn]. A hypersurface defined by f = 0 is smooth, if the system

f = 𝜕f /𝜕x1 = · · · = 𝜕f /𝜕xn = 0

has no non zero solutions.

Examples:

⋆ f (x1, x2) = 2x1
3 + x2

2 = 0 is smooth, since

𝜕f /𝜕x1 = 6x1
2 and 𝜕f /𝜕x2 = 2x2 ,

so that

f = 𝜕f /𝜕x1 = 𝜕f /𝜕x2 = 0 ⇔ (x1, x2) = (0, 0) .

⋆ f (x1, x2) = x1
2 + x2

2 − 2x2 + 1 = 0 is not smooth, since

𝜕f /𝜕x1 = 2x1 and 𝜕f /𝜕x2 = 2x2 − 2 ,
so that

f = 𝜕f /𝜕x1 = 𝜕f /𝜕x2 = 0 ⇔ (x1, x2) = (0, 1) .
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Original Construction Challenges in Fp Linearity Bounds

Deligne Theorem

Theorem [Deligne, 1974]

Let q be a power of a prime p.
Let f ∈ Fq[x1, . . . , xn] be a polynomial of degree d , with gcd(d , p) = 1.
Let fd be the degree d homogeneous component of f , i.e.

f = fd + g , deg(g) < d .

If the hypersurface defined by fd = 0 is smooth, then, we have

|S(f )| =

⃒⃒⃒⃒
⃒⃒∑︁
x∈Fn

q

𝜔f (x)

⃒⃒⃒⃒
⃒⃒ ≤ (d − 1)n · qn/2 .

Linearity bound for n = 2: ℒF ≤ (d − 1)2 · q.
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Original Construction Challenges in Fp Linearity Bounds

Butterfly - Definition

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, F2
2n , n odd.

R−1

R

x1 x2

⊕

⊕

⊕

⊕

y1 y2

𝛽x3

x1/3

×𝛼

x3

𝛽x3

×𝛼

Open variant.{︃
y1 = (x2 + 𝛼y2)

3 + (𝛽y2)
3

y2 = (x1 − (𝛽x2)
3)1/3 − 𝛼x2 .

R

R

x1 x2

⊕

⊕

y1

x3

𝛽x3

×𝛼

⊕

⊕

y2

x3

𝛽x3

×𝛼

Closed variant.{︃
y1 = (x1 + 𝛼x2)

3 + (𝛽x2)
3

y2 = (x2 + 𝛼x1)
3 + (𝛽x1)

3 .
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Original Construction Challenges in Fp Linearity Bounds

Generalized Butterfly - Definition

Butterfly[G,H, 𝛼], with G : Fq → Fq a permutation, H : Fq → Fq a function and 𝛼 ∈ Fq.

R−1

R

x1 x2

⊟

⊟

⊞

⊞

y1 y2

H

G−1

×𝛼

G

H

×𝛼

Open variant.{︃
y1 = G(x2 + 𝛼y2) + H(y2)

y2 = G−1(x1 − H(x2))− 𝛼x2 .

R

R

x1 x2

⊞

⊞

y1

G

H

×𝛼

⊞

⊞

y2

G

H

×𝛼

Closed variant.{︃
y1 = G(x1 + 𝛼x2) + H(x2)

y2 = G(x2 + 𝛼x1) + H(x1) .
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Original Construction Challenges in Fp Linearity Bounds

Generalized Butterfly - Bound

Let F = Butterfly[G,H, 𝛼], with G a permutation, H a function and 𝛼 in Fq.

f (x1, x2) = ⟨(v1, v2),F(x1, x2)⟩ − ⟨(u1, u2), (x1, x2)⟩
= v1G(x1 + 𝛼x2) + v2G(x2 + 𝛼x1) + v1H(x2) + v2H(x1)− u1x1 − u2x2 .

R

R

x1 x2

⊞

⊞

y1

G

H

×𝛼

⊞

⊞

y2

G

H

×𝛼

{︃
y1 = G(x1 + 𝛼x2) + H(x2)

y2 = G(x2 + 𝛼x1) + H(x1) .

Linearity Bound

⋆ If d = deg G > deg H > 1, then and 𝛼 ̸= ±1,

fd = (x1+𝛼x2)
d + v2/v1(x2+𝛼x1)

d = 0 is smooth.

⋆ If d = degH > deg G > 1, then

fd = x1
d + v1/v2x2

d = 0 is smooth.

ℒF ≤ (max{deg G, deg H} − 1)2 · q
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Original Construction Challenges in Fp Linearity Bounds

Generalized Butterfly - Results

Let F = Butterfly[G,H, 𝛼] with G and H monomial functions.

0 100 200 300 400 500 600

0

0.5

1

·104

q

ℒ
F

deg G = 5, deg H = 4

deg G = 5, deg H = 3

deg G = 5, deg H = 2

deg G = 3, deg H = 5

Bound: 16 q

Low-degree functions (max{deg G, deg H} = 5 and 𝛼 = 2).
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Generalized Butterfly - Results

Let F = Butterfly[G,H, 𝛼] with G and H monomial functions.
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q
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F

𝛼 = 2

𝛼 = 3

𝛼 = 5

𝛼 = (q − 1)/2

Bound: 16 q

Influence of 𝛼 (deg G = 5 and deg H = 2).
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Original Construction Challenges in Fp Linearity Bounds

Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

x1/d

Q𝛿

Open variant.{︃
y1 = x1 − Q𝛾(x2) + Q𝛿(x2 − (x1 − Q𝛾(x2))

1/d)

y2 = x2 − (x1 − Q𝛾(x2))
1/d .

x1 x2

⊟

⊞ ⊞

y1 y2

Q𝛾 xd Q𝛿

Closed variant.{︃
y1 = (x1 − x2)

d +Q𝛾(x1)

y2 = (x1 − x2)
d +Q𝛿(x2) .
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Original Construction Challenges in Fp Linearity Bounds

Generalized Flystel - Definition

F = Flystel[H1,G,H2], with G : Fq → Fq a permutation, and H1,H2 : Fq → Fq functions.

x1 x2

⊟

⊟

⊞

y1 y2

H1

G−1

H2

Open variant.{︃
y1 = x1 − H1(x2) + H2(x2 − G−1(x1 − H1(x2)))

y2 = x2 − G−1(x1 − H1(x2)) .

x1 x2

⊟

⊞ ⊞

y1 y2

H1 G H2

Closed variant.{︃
y1 = G(x1 − x2) + H1(x1)

y2 = G(x1 − x2) + H2(x2) .
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Original Construction Challenges in Fp Linearity Bounds

Generalized Flystel - Results

Let F = Flystel[H1,G,H2] with H1, G and H2 monomials.

ℒF ≤ (deg G− 1)(max{deg H1, deg H2} − 1) · q

0 100 200 300 400 500 600

0

2,000

4,000

q

ℒ
F

deg G = 3, max{deg H1, deg H2} = 2

Bound: 2 q

deg G = 5,max{deg H1, deg H2} = 2

Bound: 4 q

deg G = 5,max{deg H1, deg H2} = 3

Bound: 8 q
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Original Construction Challenges in Fp Linearity Bounds

Solving conjecture

Proposition

Let F = Flystel[H1,G,H2] be defined by H1(x) = 𝛾 + 𝛽x2, G(x) = xd and H2 = 𝛿 + 𝛽x2,
with 𝛾, 𝛿 ∈ Fp and 𝛽 ∈ F×

p . Then

ℒF ≤ (d − 1)p .

0 100 200 300 400 500 600

0

2,000

4,000

p

ℒ
F

Conjecture: p log p

d = 3

Bound: 2 p

d = 5

Bound: 4 p
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Original Construction Challenges in Fp Linearity Bounds

Conclusions

⋆ Butterfly construction found interest over prime fields

⋆ Solving the open problem of finding APN permutations over F2
p

⋆ Bounds on exponential sums have direct application to linear cryptanalysis

⋆ Deligne, 1974

Generalization of the Butterfly construction

⋆ Denef and Loeser, 1991

3-round Feistel network

⋆ Rojas-León, 2006

Generalization of the Flystel construction

F ∈ Fq[x1, x2], ∃C ∈ Fq, ℒF ≤ C × q

⋆ Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.
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Original Construction Challenges in Fp Linearity Bounds

Cohomological framework

S(f ) =
∑︁
x∈Fn

q

𝜒
(︀
F(x)

)︀
𝜓(−x)

⇓
Cohomological framework

⇓
|S(f )| =

⃒⃒⃒⃒
⃒
2n∑︁
i=0

(−1)i Tr
(︀
F | H i

c(An,ℒ)
)︀⃒⃒⃒⃒⃒

Sum of traces of the Frobenius automorphism on ℓ-adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

|S(f )| ≤ 𝜅

2n∑︁
i=0

dimH i
c(An,ℒ)
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Original Construction Challenges in Fp Linearity Bounds

Perspectives

Can we provide detailed calculations of the cohomological spaces to refine bounds?

|S(f )| ≤ 𝜅

2n∑︁
i=0

dimH i
c(An,ℒ)

(on-going work with Christophe Levrat)

Thank you
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