When Cohomology Meets Linearity AOPs in Therapy

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

CARAMBA Team meeting, Nancy, France June 19th, 2025

When Cohomology Meets Linearity: AOPs in Therapy

New symmetric primitives

What are AOPs?

When Cohomology Meets Linearity: AOPs in Therapy

New symmetric primitives

What are AOPs?

Appellations d'Origine Protégée ?

Munster

When Cohomology Meets Linearity: AOPs in Therapy

New symmetric primitives

What are AOPs?

Appellations d'Origine Protégée ?

Munster

Arithmetization-Oriented Primitives!

New symmetric primitives for

- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- * **ZK**: Systems of Zero-Knowledge proofs

Traditional case

$$y \leftarrow E(x)$$

* Optimized for: implementation in software/hardware

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

 Optimized for: integration within advanced protocols

Traditional case

$$y \leftarrow E(x)$$

- Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4, 8$

Ex: Field of AES: \mathbb{F}_{2^n} where n = 8

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$
 - Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_p where p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

Traditional case

$$y \leftarrow E(x)$$

- Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4, 8$
- * Operations: logical gates/CPU instructions

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- Optimized for: integration within advanced protocols
- ★ Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- Operations: large finite-field arithmetic

Traditional case

$$y \leftarrow E(x)$$

- Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4, 8$
- * Operations: logical gates/CPU instructions

Cryptanalysis

Decades of analysis

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$
- * Operations: large finite-field arithmetic

Cryptanalysis

 \leq 8 years of analysis

Many new symmetric primitives

Clémence Bouvier

Many new symmetric primitives

Clémence Bouvier

Past works

Closed Flystel:

$$F: \mathbb{F}_q^2 \to \mathbb{F}_q^2, (x_1, x_2) \mapsto (y_1, y_2)$$

- * Introduced by [C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, CRYPTO 2023]
- * Building block of Anemoi
- * Degenerated case of Butterfly

Past works

Closed Flystel: F

$$F: \mathbb{F}_q^2 \to \mathbb{F}_q^2, (x_1, x_2) \mapsto (y_1, y_2)$$

- * Introduced by [C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, CRYPTO 2023]
- * Building block of Anemoi
- * Degenerated case of Butterfly

Solving an open problem since 2014 on APN permutations over \mathbb{F}_p^2

Existence of APN permutations

F is Almost Perfect Nonlinear iff

$$\delta_{F} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{p}^{m}, F(x+a) - F(x) = b\}| = 2.$$

Flystel in \mathbb{F}_p with x^d : $\delta_{Flystel} \leq d-1$

Recent cryptanalysis progress

- * Direct applications of results for exponential sums [T. Beyne and C. Bouvier, 2024]
- * Solving a conjecture on the linearity of the Flystel construction

Linearity bound

$$\mathcal{L}_{Flystel} = \max_{u \neq 0, v} \left| \sum_{x \in \mathbb{F}_p^2} e^{(2i\pi/p)(\langle v, F(x) \rangle - \langle u, x \rangle)} \right| \leq (d-1)p$$

Recent cryptanalysis progress

- * Direct applications of results for exponential sums [T. Beyne and C. Bouvier, 2024]
- * Solving a conjecture on the linearity of the Flystel construction

Work in progress

- Can we provide detailed calculations of the cohomological spaces to refine bounds on the linearity of Butterfly-like constructions? (with C. Levrat)
- * Can we generalize to other constructions?
- * Is the Flystel an optimal construction? How to classify Butterfly-like constructions? [C. Bouvier, Fq 2025]

Work in progress

- Can we provide detailed calculations of the cohomological spaces to refine bounds on the linearity of Butterfly-like constructions? (with C. Levrat)
- * Can we generalize to other constructions?
- * Is the Flystel an optimal construction? How to classify Butterfly-like constructions? [C. Bouvier, Fq 2025]

