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A new context

Traditional case

Alphabet

Operations based on logical gates or CPU

instructions.
F5, with n~4,8

Cryptanalysis

Decades of cryptanalysis
* algebraic attacks v/
* differential attacks v
* linear attacks v/

%% oo
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Arithmetization-Oriented

Alphabet
Operations based on large finite-field arith-
metic.

Fq, with g € {2", p},p~ 2", n> 32

Cryptanalysis

< 8 years of cryptanalysis
* algebraic attacks v/
* differential attacks X
* linear attacks X
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Linearity

Definition

Let F: F§ — F7' be a function and w a primitive character. The Walsh transform for the
character w of the linear approximation (u, v) of F is given by

WE, = 3 wlnFta =)

x€Fy

F _ _n F
Wu,v_q .Cu,v
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Linearity

Definition

Let F: F§ — F7' be a function and w a primitive character. The Walsh transform for the
character w of the linear approximation (u, v) of F is given by

WE, = 3 wlnFta =)

x€Fy

F _ _n F
Wu,v—q .Cu,v

Definition
The Linearity Lg of F : ]Fg — IE‘q’" is the highest Walsh coefficient.

L — o |W5v| .
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Anemoi round function

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].
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Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

X1 X2 X1 X2
5 Q, 7
&) ) [
B Q(S 5] =s)
y1 Y2 n Y2
Open variant. Closed variant.
174 — (31— %) +Q, (x)
i =x1—Q,(x) + Qs(x2 — (x1 — Qy(x2))*) 7 Le 2 S !
2 =xo—(x— QA/(X2))1/d- vz =la =)+ Qsle).
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Closed Flystel in Fyn

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

X1 X2
£F — max (71)(<V7F(X)>_<”7X>)
ead] [« | oo | 2
Bound

Linearity bound for the Flystel:
Y1 Y2

1

Closed Flystel. Lp <2
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Closed Flystel in F),

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

X1 X
o d is a small integer s.t.
x + x? is a permutation of F,
usually d = 3,5).
‘7+,6x2 ‘ x¢ ‘ ‘5+ﬂx2 ( y +5)
] T LF = max Z 27 UV FG) = ()
u,v#£0
x€F2
pat Y2

Closed Flystel.
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Closed Flystel in F),

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

X1 X2
= d is a small integer s.t.
x — x? is a permutation of F,
usually d = 3,5).
"y+ﬂx2 ‘ x4 ’ ‘5+ﬁx2 ( Y -5)
] T LF = max Z 27 UV FG) = ()
u,v#0
x€F2
» Y2

Closed Flystel.

How to determine an accurate bound for the linearity of the Closed Flystel in IF,,?
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Weil bound

Proposition [Weil, 1948]

Let f € F,[x] be a univariate polynomial with deg(f) = d. Then

Lr<(d—-1)y/p
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Weil bound

Proposition [Weil, 1948]

Let f € F,[x] be a univariate polynomial with deg(f) = d. Then

Lr<(d—-1)y/p

X1 X2 ,Cn’ )j’}xﬁ S \/E .
o Lr<(d—1)py/p?
I L6+3x2 < \/ﬁ .

"Y + Bx? ‘ x? ‘ ‘5 + Bx?
Conjecture
" " L = max |30 el IFD=)| < plogp
Closed Flystel. u,v#£0 = S
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Experimental results
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Experimental results (d = 3)

Conclusions
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Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools
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Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

* Applications of results for exponential sums (generalization of Weil bound)

WL'::,V = Z SUFC) = (ux)) S(f) = Z L)

x€lFy x€Fy

* g is a finite field s.t. g is a power of a prime p.

* Functions with 2 variables F € F[x1, x2].
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Generalizations of Weil bound

* Deligne bound

* Application to the Generalized Butterfly construction

* Denef and Loeser bound

* Application to 3-round Feistel construction

* Rojas-Ledn bound

* Application to the Generalized Flystel construction
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Generalized Butterfly

Originally introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, F3,, n odd.

BUTTERFLY[G, H, a], with G : F, — F, a permutation, H : F, — F, a function and a € F,,.

Open variant. Closed variant.
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Generalized Butterfly

Originally introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, F3,, n odd.

BUTTERFLY[G, H, a], with G : F, — F, a permutation, H : F, — F, a function and a € F,,.

f(x1,x0) = (v,F(x)) — (u,x) = iG(x1 + ax2) + vaG(x0 + ax1) + viH(x2) + vaH(x1) — u1xi — upxo -

» ¥2 Y2
Open variant. Closed variant.

From Algebraic Geometry to Linear Cryptanalysis: Application to Anemoi

Deligne Bound
The hypersurface defined by fy =

Conclusions

0

(the  degree-d  homogeneous  com-
ponent of f) is smooth so that

Lr < (max{deg G,degH} —1)?- g

Clémence Bouvier

15/27



Other results
oooe

3-round Feistel

Let FEISTEL[F1, F2, F3] be a 3-round Feistel network with F, a permutation and d; > ds where
dy = deg(F1), d> = deg(F2), and d5 = deg(F3) .

X1 X2
im} Fl
z2
F2 O
H F3
Y1 2

A 3-round Feistel.
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Conclusions

3-round Feistel

Let FEISTEL[F1, F2, F3] be a 3-round Feistel network with F, a permutation and d; > ds where
dy = deg(F1), d> = deg(F2), and d5 = deg(F3) .

f(z1,22) = (v,F(2)) — (u,z) = viF3(z2 + Fa(21)) + vaFa(21) + uiF1(22) + (vi — u1)z1 + (vo — u2) > .

X1 X2
Denef-Loeser Bound
H Fq .
2 f is commode and
_ 2 . d
non-degenerate, with
F2 L Newton number: o A1)
v F V(f):(dl—l)(d2d3—1) GG 000 .\‘\\
nf 3 \._/\
' dads
N Y2

£|: S (dl — 1)(d2d3 — 1) e

A 3-round Feistel.
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Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

X1 X2 X1 X2

& Q, 0

x1/d ——H {Qv} {xd} {QJ}
B Qs & 8
n Y2 V1 Y2
Open variant. Closed variant.
— _ d
n =x—Q,0e)+ Qs — (a - Q,(x))9) no =la X2)d +Qy(x)
2 =x2—(x1— Qv(Xz))l/d- o =(a =)+ Q).
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Generalized Flystel - Definition

F = FLYSTEL[H}, G, H,], with G : F, — [, a permutation, and Hq, H, : F;, — F, functions.

X1 X2 X1 X

’_
U
g
firy
R
L

()
L.
Mk
LLr
T
E
)
T
5

i H: & =
y1 Y2 71 Y2
Open variant. Closed variant.
Y1 =Xx1— Hl(Xz) + H2(X2 — G_I(Xl — H1(X2))) yi = G(Xl - XQ) + Hl(xl)
Yo =X —G_l(X1 - Hl(XQ)). Y2 :G(Xl _X2)+H2(X2)'
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Isolated singularities

Definition

* A singular point of a hypersurface is isolated if there exists a Zariski neighborhood of
the point that contains no other singular points.

* A polynomial g is quasi-homogeneous of degree 0 is there exists wy, ..., w, s.t.
g()‘WIXh 000y )‘W"Xn) = )\6g(X1, ©oo )Xn) :

* The Milnor number of the singularity is equal to []"_,(6/w; — 1)
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Isolated singularities

Definition

* A singular point of a hypersurface is isolated if there exists a Zariski neighborhood of
the point that contains no other singular points.

* A polynomial g is quasi-homogeneous of degree 0 is there exists wy, ..., w, s.t.
g()‘W1X17 000y )‘W"Xn) = )\6g(X1, ©oo )Xn) :
* The Milnor number of the singularity is equal to []"_,(6/w; — 1)
Example: Let f(x) = (x — 1)7.

* x = 1 is the only singular point of f =0.

% Up to translation, we can consider the singularity in the origin: g(x) = x?.

g(\"x) = (\x)? = A" Ix? = \"9g(x)  sothatd=w-d
* Milnor number of the singularity: 0/w —1=d — 1.
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Rojas-Ledén Theorem

Theorem [Rojas-Leén, 2006]
Let f € Fy[xi,...,x,], s.t. deg(f) = d.

Suppose that f = f; + fy + - -+, where fy, fy, are resp. the degree-d, degree-d’, homo-
geneous component of f, with gcd(d, p) = ged(d’, p) =1 and d’'/d > p/(p+ (p — 1)3).
If the following conditions are satisfied

* the hypersurface defined by 7; = 0 has at worst quasi-homogeneous isolated singu-
larities of degrees prime to p with Milnor numbers i1, . .., is,

* the hypersurface defined by fy» = 0 contains none of these singularities,
then we have

1S(H)l =D ™| < <(d -1)"—(d - d’)Zm) -q"2 .

x€Fy
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Rojas-Ledén Theorem

Theorem [Rojas-Leén, 2006]

Let f € Fy[xi,...,x,], s.t. deg(f) = d.

Suppose that f = f; + fy + - -+, where fy, fy, are resp. the degree-d, degree-d’, homo-
geneous component of f, with gcd(d, p) = ged(d’, p) =1 and d’'/d > p/(p+ (p — 1)3).
If the following conditions are satisfied

* the hypersurface defined by 7; = 0 has at worst quasi-homogeneous isolated singu-
larities of degrees prime to p with Milnor numbers i1, . .., is,

* the hypersurface defined by fy» = 0 contains none of these singularities,
then we have

1S(H)l =D ™| < ((d -1)"—(d - d’)Zm) -q"2 .

x€Fy

Linearity bound for n =2: L < ((d —1)> = (d — d')Y i i) - q.
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Generalized Flystel - Bound
Let F = FLYSTEL[H1, G, Hy], with G a permutation, Hy, H, functions (deg G > deg H1,deg H>).

f(X13X2) = <(V17 V2)a F(X13X2)> - <(U1, U2), (X13X2)>
= (vi + v2) G(x1 — x2) + viH1(x1) + voHa(32) — urx1 — toxs .

X1 X2

0

&) ) &

1 2

yi = G(x1 —x2) + Hi(x)
yo = G(x —x) + Ha(x) .
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Generalized Flystel - Bound

Let F = FLYSTEL[H1, G, H,], with G a permutation, Hy, H, functions (deg G > degH;, deg H»).

f(X13X2) = <(V17 VQ)a F(X17X2)> - <(U13 U2)7 (X13X2)>
=(v1 + v2) G(xa — x2) + viH1(x1) + voHo(x0) — tixy — woxo .

X1 X2 - .
Linearity Bound

i)

% The hypersurface
fg = (V1 + V2)(X1 = Xz)d =0
{ H, } contains one singular point [1 : 1] of quasi-homogeneous type
with Milnor number d — 1.

) [
% The hypersurface

H ) £ = ViX;jeg Hi 0

does not contain this point.

» Y2
n = Gla —x)+ Hi(x) Le < (deg G — 1)(max{degHy,degH,} — 1) - g
yo = G(x —x) + Ha(x) .
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Generalized Flystel - Results

Let F = FLYSTEL[H1, G, H,] with Hy, G and Hy monomials.

5’000 | @ degG =3, max{degH;,degH>} =2 n N
=== Bound: 2 g “."‘
4.000|| v degG =5 max{degH;,degH>} =2 ,.'“ |

) et A A
----- Bound: 4 g Lot
o A
A degG =5, max{degH;,degH>} =3 R AA
3,000 H..... Bound: 8 ¢ ‘.“" “ A N
ot A A
g R 4 e
2,000 | A et
o ST D 4
R “ - —;v ww Y
ot oW .
1,000 |- e a A Y e
RN w - Y W
A;.;’ w v “,m..--w w
- '-ﬁ VT = W
= |
| | | | | | |
0 100 200 300 400 500 600
q

Low-degree permutations G, Hi and H».
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Generalized Flystel - Results

Let F = FLYSTEL[H1, G, H,] with Hy, G and Hy monomials.

A | Gisa permt‘ltation j
A G is not a permutation ‘—"
3000M---Bound:6q ’," |
v""A
4"" AA a
2,000 | e
4 2 s 5 st
el m““m
P A
1,000 |- AA*A‘M.“% .
‘v'A M
0 M i
| | | | | | |
0 100 200 300 400 500 600
q

deg G =7 and degH; = degH, = 2.
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Solving conjecture

Conjecture

Let F = FLYSTEL[H1, G, H,] be defined by Hi(x) = v + 8x?, G(x) = x? and Hy = 6 + 8x2,
with 7,0 € F, and 8 € F. Then
Le < plogp .
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Solving conjecture

Conjecture
Let F = FLYSTEL[H1, G, H,] be defined by Hi(x) = v + 8x?, G(x) = x? and Hy = 6 + 8x2,

with 7,0 € F, and 8 € F. Then
Le < plogp .

Conjecture proved for d < log p

Proposition
Let F = FLYSTEL[H1, G, H,] be defined by Hi(x) = v + 8x?, G(x) = x? and Hy = & + 8x2,
with 7,0 € F, and 8 € F;. Then

Le<(d=1)p.
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Solving conjecture
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Cohomological framework

S(f) = wa(x) = Zw“‘/!F(X))_(u:X»

x€eFy S
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Cohomological framework

S(f) = wa(x) = ZW(<V’F(X)>_<U’X>)

x€eFy S

4

Cohomological framework

4
SO = [S (-1 Te(F | Hi(A™. )

i=0

Sum of traces of the Frobenius automorphism on ¢-adic cohomology groups.
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Cohomological framework

S(f) = wa(x) = ZW(<V’F(X)>_<U’X>)

x€eFy S

4

Cohomological framework

4

IS(N] = |D_(=1) Tr(F | HI(A", L))

i=0

Sum of traces of the Frobenius automorphism on ¢-adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.
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Cohomological framework

S(f) = wa(x) = Z\UJ(<V’F(X)>_<U’X>)

x€eFy S

4

Cohomological framework

4

IS(N] = |D_(=1) Tr(F | HI(A", L))

i=0

Sum of traces of the Frobenius automorphism on ¢-adic cohomology groups.
Sum of traces of a linear map on a vector space of finite dimension.

2n
IS(Fl < kY _dimHI(A", L)
i=0
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Conclusions

* Bounds on exponential sums have direct application to linear cryptanalysis
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Conclusions

* Bounds on exponential sums have direct application to linear cryptanalysis

* 3 different results...

* Deligne, 1974
* Denef and Loeser, 1991
* Rojas-Ledn, 2006
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FeF,[x,x], 3CeF,, Li<Cxgq

% Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

Thank you
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