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New symmetric primitives
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A new context

Traditional case

Alphabet

Operations based on logical gates or CPU
instructions.

Fn
2, with n ≃ 4, 8

Cryptanalysis

Decades of cryptanalysis

⋆ algebraic attacks ✓

⋆ differential attacks ✓

⋆ linear attacks ✓

⋆ ...

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arith-
metic.

Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 32

Cryptanalysis

≤ 8 years of cryptanalysis

⋆ algebraic attacks ✓

⋆ differential attacks ✗

⋆ linear attacks ✗

⋆ ...
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Linearity

Definition

Let F : Fn
q → Fm

q be a function and 𝜔 a primitive character. The Walsh transform for the
character 𝜔 of the linear approximation (u, v) of F is given by

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) .

𝒲F
u,v = qn · CF

u,v

Definition

The Linearity ℒF of F : Fn
q → Fm

q is the highest Walsh coefficient.

ℒF = max
u,v ̸=0

⃒⃒
𝒲F

u,v

⃒⃒
.
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Anemoi round function

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].
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Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x1 x2

⊟

⊟

⊞

y1 y2

Q𝛾

x1/d

Q𝛿

Open variant.{︃
y1 = x1 − Q𝛾(x2) + Q𝛿(x2 − (x1 − Q𝛾(x2))

1/d)

y2 = x2 − (x1 − Q𝛾(x2))
1/d .

x1 x2

⊟

⊞ ⊞

y1 y2

Q𝛾 xd Q𝛿

Closed variant.{︃
y1 = (x1 − x2)

d +Q𝛾(x1)

y2 = (x1 − x2)
d +Q𝛿(x2) .
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Closed Flystel in F2n

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x1 x2

⊕

⊕ ⊕

y1 y2

𝛾 + 𝛽x3 x3 𝛿 + 𝛽x3

Closed Flystel.

ℒF = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒ ∑︁
x∈F2

2n

(−1)(⟨v ,F(x)⟩−⟨u,x⟩)

⃒⃒⃒⃒
⃒⃒

Bound

Linearity bound for the Flystel:

ℒF ≤ 2n+1
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Closed Flystel in Fp

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x1 x2

⊟

⊞ ⊞

y1 y2

𝛾 + 𝛽x2 xd 𝛿 + 𝛽x2

Closed Flystel.

d is a small integer s.t.

x ↦→ xd is a permutation of Fp

(usually d = 3, 5).

ℒF = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒∑︁
x∈F2

p

e(
2i𝜋
p )(⟨v ,F(x)⟩−⟨u,x⟩)

⃒⃒⃒⃒
⃒⃒

How to determine an accurate bound for the linearity of the Closed Flystel in Fp?
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Weil bound

Proposition [Weil, 1948]

Let f ∈ Fp[x ] be a univariate polynomial with deg(f ) = d . Then

ℒf ≤ (d − 1)
√
p

x1 x2

⊟

⊞ ⊞

y1 y2

𝛾 + 𝛽x2 xd 𝛿 + 𝛽x2

Closed Flystel.

ℒF ≤ (d − 1)p
√
p ?

⎧⎪⎨⎪⎩
ℒ𝛾+𝛽x2 ≤ √

p ,

ℒxd ≤ (d − 1)
√
p ,

ℒ𝛿+𝛽x2 ≤ √
p .

Conjecture

ℒF = max
u,v ̸=0

⃒⃒⃒⃒
⃒⃒∑︁
x∈F2

p

e(
2i𝜋
p )(⟨v ,F(x)⟩−⟨u,x⟩)

⃒⃒⃒⃒
⃒⃒ ≤ p log p
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Experimental results
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Weil Bound: 10 p3/2

Conjecture: p log p
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Experimental results (d = 3)
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Experimental results (d = 5)
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Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

⋆ Applications of results for exponential sums (generalization of Weil bound)

𝒲F
u,v =

∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩) → S(f ) =
∑︁
x∈Fn

q

𝜔f (x) .

⋆ Fq is a finite field s.t. q is a power of a prime p.

⋆ Functions with 2 variables F ∈ Fq[x1, x2].
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Generalizations of Weil bound

⋆ Deligne bound

⋆ Application to the Generalized Butterfly construction

⋆ Denef and Loeser bound

⋆ Application to 3-round Feistel construction

⋆ Rojas-León bound

⋆ Application to the Generalized Flystel construction
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Generalized Butterfly

Originally introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, F2
2n , n odd.

Butterfly[G,H, 𝛼], with G : Fq → Fq a permutation, H : Fq → Fq a function and 𝛼 ∈ Fq.

f (x1, x2) = ⟨v ,F(x)⟩ − ⟨u, x⟩ = v1G(x1 + 𝛼x2) + v2G(x2 + 𝛼x1) + v1H(x2) + v2H(x1)− u1x1 − u2x2 .

R−1

R

x1 x2

⊟

⊟

⊞

⊞

y1 y2

H

G−1

×𝛼

G

H

×𝛼

Open variant.

R

R

x1 x2

⊞

⊞

y1

G

H

×𝛼

⊞

⊞

y2

G

H

×𝛼

Closed variant.

Deligne Bound

The hypersurface defined by fd = 0
(the degree-d homogeneous com-
ponent of f ) is smooth so that

ℒF ≤ (max{deg G, deg H} − 1)2 · q
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3-round Feistel

Let Feistel[F1,F2,F3] be a 3-round Feistel network with F2 a permutation and d1 ≥ d3 where

d1 = deg(F1), d2 = deg(F2), and d3 = deg(F3) .

f (z1, z2) = ⟨v ,F(z)⟩ − ⟨u, z⟩ = v1F3(z2 + F2(z1)) + v2F2(z1) + u1F1(z2) + (v1 − u1)z1 + (v2 − u2)z2 .

x1 x2

⊞

⊞

⊞

y1 y2

F1

F2

F3

z1
×

z2 ×

A 3-round Feistel.

Denef-Loeser Bound

f is commode and
non-degenerate, with
Newton number:

𝜈(f ) = (d1−1)(d2d3−1) .
z1

z2

d2d3

d1

d3
∆(f )

ℒF ≤ (d1 − 1)(d2d3 − 1) · q
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Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

x1 x2

⊟

⊟

⊞

y1 y2
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x1/d
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Generalized Flystel - Definition

F = Flystel[H1,G,H2], with G : Fq → Fq a permutation, and H1,H2 : Fq → Fq functions.

x1 x2

⊟

⊟

⊞

y1 y2

H1

G−1

H2

Open variant.{︃
y1 = x1 − H1(x2) + H2(x2 − G−1(x1 − H1(x2)))

y2 = x2 − G−1(x1 − H1(x2)) .

x1 x2

⊟

⊞ ⊞

y1 y2

H1 G H2

Closed variant.{︃
y1 = G(x1 − x2) + H1(x1)

y2 = G(x1 − x2) + H2(x2) .
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Isolated singularities

Definition

⋆ A singular point of a hypersurface is isolated if there exists a Zariski neighborhood of
the point that contains no other singular points.

⋆ A polynomial g is quasi-homogeneous of degree 𝛿 is there exists w1, . . . ,wn s.t.

g(𝜆w1x1, . . . , 𝜆
wnxn) = 𝜆𝛿g(x1, . . . , xn) .

⋆ The Milnor number of the singularity is equal to
∏︀n

i=1(𝛿/wi − 1)

Example: Let f (x) = (x − 1)d .

⋆ x = 1 is the only singular point of f = 0.

⋆ Up to translation, we can consider the singularity in the origin: g(x) = xd .

g(𝜆wx) = (𝜆wx)d = 𝜆w ·dxd = 𝜆w ·dg(x) so that 𝛿 = w · d

⋆ Milnor number of the singularity: 𝛿/w − 1 = d − 1.
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Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let f ∈ Fq[x1, . . . , xn], s.t. deg(f ) = d .

Suppose that f = fd + fd′ + · · · , where fd , fd′ , are resp. the degree-d , degree-d ′, homo-
geneous component of f , with gcd(d , p) = gcd(d ′, p) = 1 and d ′/d > p/(p + (p − 1)2).

If the following conditions are satisfied

⋆ the hypersurface defined by fd = 0 has at worst quasi-homogeneous isolated singu-
larities of degrees prime to p with Milnor numbers 𝜇1, . . . , 𝜇s ,

⋆ the hypersurface defined by fd′ = 0 contains none of these singularities,

then we have

|S(f )| =

⃒⃒⃒⃒
⃒⃒∑︁
x∈Fn

q

𝜔f (x)

⃒⃒⃒⃒
⃒⃒ ≤

(︃
(d − 1)n − (d − d ′)

s∑︁
i=1

𝜇i

)︃
· qn/2 .

Linearity bound for n = 2: ℒF ≤ ((d − 1)2 − (d − d ′)
∑︀s

i=1 𝜇i) · q.
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Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let f ∈ Fq[x1, . . . , xn], s.t. deg(f ) = d .

Suppose that f = fd + fd′ + · · · , where fd , fd′ , are resp. the degree-d , degree-d ′, homo-
geneous component of f , with gcd(d , p) = gcd(d ′, p) = 1 and d ′/d > p/(p + (p − 1)2).

If the following conditions are satisfied

⋆ the hypersurface defined by fd = 0 has at worst quasi-homogeneous isolated singu-
larities of degrees prime to p with Milnor numbers 𝜇1, . . . , 𝜇s ,

⋆ the hypersurface defined by fd′ = 0 contains none of these singularities,

then we have

|S(f )| =

⃒⃒⃒⃒
⃒⃒∑︁
x∈Fn

q

𝜔f (x)
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Generalized Flystel - Bound

Let F = Flystel[H1,G,H2], with G a permutation, H1,H2 functions (deg G > deg H1, deg H2).

f (x1, x2) = ⟨(v1, v2),F(x1, x2)⟩ − ⟨(u1, u2), (x1, x2)⟩
= (v1 + v2) G(x1 − x2) + v1H1(x1) + v2H2(x2)− u1x1 − u2x2 .

x1 x2

⊟

⊞ ⊞

y1 y2

H1 G H2

{︃
y1 = G(x1 − x2) + H1(x1)

y2 = G(x1 − x2) + H2(x2) .

Linearity Bound

⋆ The hypersurface

fd = (v1 + v2)(x1 − x2)
d = 0

contains one singular point [1 : 1] of quasi-homogeneous type
with Milnor number d − 1.

⋆ The hypersurface

fd′ = vix
deg Hi
i = 0

does not contain this point.

ℒF ≤ (deg G− 1)(max{deg H1, deg H2} − 1) · q
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Generalized Flystel - Results

Let F = Flystel[H1,G,H2] with H1, G and H2 monomials.
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0

1,000

2,000

3,000

4,000

5,000

q

ℒ
F

deg G = 3, max{deg H1, deg H2} = 2

Bound: 2 q

deg G = 5,max{deg H1, deg H2} = 2

Bound: 4 q

deg G = 5,max{deg H1, deg H2} = 3

Bound: 8 q

Low-degree permutations G, H1 and H2.
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Generalized Flystel - Results

Let F = Flystel[H1,G,H2] with H1, G and H2 monomials.

0 100 200 300 400 500 600

0

1,000

2,000

3,000

q

ℒ
F

G is a permutation

G is not a permutation

Bound: 6 q

deg G = 7 and deg H1 = degH2 = 2.
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Solving conjecture

Conjecture

Let F = Flystel[H1,G,H2] be defined by H1(x) = 𝛾 + 𝛽x2, G(x) = xd and H2 = 𝛿 + 𝛽x2,
with 𝛾, 𝛿 ∈ Fp and 𝛽 ∈ F×

p . Then
ℒF ≤ p log p .

Conjecture proved for d ≤ log p

Proposition

Let F = Flystel[H1,G,H2] be defined by H1(x) = 𝛾 + 𝛽x2, G(x) = xd and H2 = 𝛿 + 𝛽x2,
with 𝛾, 𝛿 ∈ Fp and 𝛽 ∈ F×

p . Then

ℒF ≤ (d − 1)p .
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Solving conjecture
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Cohomological framework

S(f ) =
∑︁
x∈Fn

q

𝜔f (x) =
∑︁
x∈Fn

q

𝜔(⟨v ,F(x)⟩−⟨u,x⟩)

⇓
Cohomological framework

⇓
|S(f )| =

⃒⃒⃒⃒
⃒
2n∑︁
i=0

(−1)i Tr
(︀
F | H i

c(An,ℒ)
)︀⃒⃒⃒⃒⃒

Sum of traces of the Frobenius automorphism on ℓ-adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

|S(f )| ≤ 𝜅

2n∑︁
i=0

dimH i
c(An,ℒ)
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Conclusions

⋆ Bounds on exponential sums have direct application to linear cryptanalysis

⋆ 3 different results...

for 3 important constructions

⋆ Deligne, 1974

Generalization of the Butterfly construction

⋆ Denef and Loeser, 1991

3-round Feistel network

⋆ Rojas-León, 2006

Generalization of the Flystel construction

F ∈ Fq[x1, x2], ∃C ∈ Fq, ℒF ≤ C × q

⋆ Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

Thank you
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